
Master-thesis June 2002
Department of Mathematical Sciences
University of Aarhus
Denmark

Computing Gröbner fans of

toric ideals

Anders Nedergaard Jensen

Advisor: Niels Lauritzen

Abstract

This thesis is about the toric ideals in a polynomial ring over a �eld.
Basic properties of toric ideals and methods for computing Gröbner bases
for them are presented. This includes the saturating Buchberger algorithm
taking advantage of the structure of toric ideals. Associated to a positive-
homogeneous ideal is its state polytope and its Gröbner fan. Graph traver-
sal algorithms for the edge graph of the state polytope of a toric ideal are
given and implemented. Using these we can compute all reduced Gröbner
bases of a toric ideal and thereby also the Gröbner fan. Combining various
ideas the �nal program becomes faster than the original one by Huber and
Thomas allowing us to compute even larger Gröbner fans than possible
before.

2

Contents

1 Toric ideals 6
1.1 The group ring . 6
1.2 The polynomial ring and the Laurent polynomial ring 7
1.3 Toric ideals . 8
1.4 Prime ideals generated by binomials 10

2 Computing generators for a toric ideal 13
2.1 Computing generators for a toric ideal 13
2.2 Representing binomials . 14
2.3 The saturating division algorithm 14
2.4 The saturating Buchberger algorithm 18

3 Saturating ideals 21
3.1 Homogeneous ideals . 21
3.2 Saturating ideals . 22

4 Lattices 26
4.1 Lattices . 26
4.2 A reduced basis in R2 . 26
4.3 A reduced basis in Rn . 27
4.4 Lenstra Lenstra Lovász algorithm 28
4.5 Dependent integer vectors . 31

5 Convex polyhedral sets 36
5.1 Convex polyhedral sets . 36
5.2 Faces . 36
5.3 Normal fans . 38

6 The Gröbner fan 40
6.1 Lemmas in Sturmfels' . 40
6.2 Initial ideals . 41
6.3 Homogeneous ideals . 43
6.4 Reduced Gröbner bases and monomial initial ideals 43
6.5 The Gröbner fan . 45
6.6 Facets of toric Gröbner cones . 47
6.7 The state polytope . 50

7 Computing the Gröbner fan 52
7.1 Algorithm �ip . 52

7.1.1 Implementation details . 53
7.2 Finding the facets of a Gröbner cone 54
7.3 Traversing the graph . 55

3

7.4 The toric Gröbner walk . 56
7.5 The reverse search tree method 59
7.6 Example . 61

8 Computational experience 63
8.1 Timing examples . 63
8.2 Computing a single reduced Gröbner basis 65
8.3 Computing all reduced Gröbner bases 67
8.4 Compared to TiGERS . 68
8.5 Where is the time spent? . 69
8.6 Reliability . 70

9 Postscript 71

A Sources 72

B Notation 73

C A tiny user manual 74

4

Preface

My interest has always been the interplay between mathematics and computer
science so Gröbner bases were obviously a possible subject for my master thesis.
Taking a course on Gröbner bases some years ago my fellow student Jesper Pe-
tersen and I implemented Buchberger's algorithm for the polynomial ring over the
�eld Q. An unpleasant property of this �eld is that the fraction representation of
the polynomial coe�cients usually grow very large as the Gröbner basis compu-
tation proceeds. The �rst part of this master thesis is about the so-called toric
ideals whose reduced Gröbner bases can be computed without doing non-trivial
calculations in the �eld. Toric ideals are interesting for the reason among others
that they can be used for solving certain combinatorial problems. Among these
is the integer programming problem known to be NP-complete (see [Sturmfels]
and [Papadimitriou 1994] for details). For that reason we cannot hope for a good
theoretical time complexity in general nor is a complexity analysis a subject of
this thesis.

For the second part of the thesis my advisor Niels Lauritzen suggested the
paper �Computing Gröbner Fans of Toric Ideals� by Birkett Huber and Rekha
Thomas. My task has been to understand this paper and the underlying theory,
�ll out some gaps and implement its algorithms. The idea is to start with one
reduced Gröbner basis and vary the term order to get an other. In this way we
compute all reduced Gröbner bases of a toric ideal and thereby we also compute
the so-called Gröbner fan of the ideal. Again the properties of toric ideals make
the computations easier. The algorithms presented have all been implemented
giving a program considerably faster than the original one by [Huber,..] allowing
us to compute Gröbner fans with more elements than before. Experiments are
presented in the last section.

The reader should be familiar with basic Gröbner basis theory. For students
in Århus this knowledge can be obtained by reading the �Algebra 1� course notes
by Niels Lauritzen. Other people could read [Cox, Little and O'Shea]. Appendix
A contains a list of sources for the various sections and appendix B describes the
notation used. At some points I have left out central proofs. These are the proofs
of theorems from polyhedral set theory connecting the Gröbner fan and the state
polytope of an ideal. Proving these theorems in detail could easily add another
15 pages to the thesis. That is why they were left out. Proofs for these theorems
are given in [Sturmfels].

5

1 Toric ideals

In this section we will de�ne the toric ideals using the group ring construction of
the polynomial rings over a �eld. Some basic properties of the toric ideals will
be proved. To become more familiar with toric ideals we will end this section by
proving that the toric ideals actually are the prime ideals generated by binomials
(see de�nition 1.10).

1.1 The group ring

Let k be a �eld and G a monoid. The group ring is an algebra k[G] consisting
of all functions f : G → k with �nite support (f(a) 6= 0 for only �nitely many
a ∈ G). The addition is given by addition in k:

(f + g)(σ) = f(σ) + g(σ)

for f, g ∈ k[G] and σ ∈ G. The zero function is the zero element in k[G] and the
product of two elements f, g ∈ k[G] is given by the convolution:

(g ∗ f)(σ) =
∑

λ+µ=σ

f(λ) ∗ g(µ)

where σ ∈ G and (λ, µ) runs through G × G so that λ + µ = σ. Since f and g
have �nite support, the sum is �nite. The new function (g ∗ f) has �nite support
and is therefore an element in k[G]. The 1-element is the map mapping zero to
1 and the rest of G to zero. Scaling an element f ∈ k[G] by an element a ∈ k is
done by:

(af)(σ) = a(f(σ))

for σ ∈ G.
Proposition 1.1 Let k be a �eld and G a monoid. k[G] is an algebra over k.

The proof is left to the reader.
Let G and H be monoids and let A : G→ H be a monoid homomorphism. A

induces an algebra homomorphism πA : k[G]→ k[H] by

πA(f)(σ) =
∑
Aλ=σ

f(λ)

for f ∈ k[G], σ ∈ H and λ running through G so that Aλ = σ. πA(f) has �nite
support.
Proposition 1.2 πA is an algebra homomorphism.

6

Proof. Let π = πA. We check the equalities:
π(f + g)(σ) =

∑
Aλ=σ

(f + g)(λ) =
∑
Aλ=σ

f(λ) +
∑
Aλ=σ

g(λ) = π(f)(σ) + π(g)(σ)

= (π(f) + π(g))(σ)

π(f ∗ g)(σ) =
∑
Aλ=σ

(f ∗ g)(λ) =
∑
Aλ=σ

∑
α+β=λ

f(α) ∗ g(β) =
∑

A(α+β)=σ

f(α) ∗ g(β)

=
∑
a+b=σ

∑
Aα=a,Aβ=b

f(α) ∗ g(β)

=
∑
a+b=σ

(
∑
Aα=a

f(α)) ∗ (
∑
Aβ=b

g(β)) =
∑
a+b=σ

π(f)(a) ∗ π(g)(b) = (π(f) ∗ π(g))(σ)

π(c ∗ f)(σ) =
∑
Aλ=σ

(c ∗ f)(λ) =
∑
Aλ=σ

c ∗ (f(λ)) = c ∗
∑
Aλ=σ

(f(λ)) = c ∗ (π(f)(σ))

π(1)(σ) = 1(σ)

2

1.2 The polynomial ring and the Laurent polynomial ring

The group ring construction gives us an alternative way of constructing the poly-
nomial ring over a �eld k in several variables. Let n ∈ N. Nn is a monoid by
vector addition. k[Nn] is isomorphic to k[x] := k[x1, . . . , xn]. One isomorphism is
given by: xi maps to the map taking the ith standard basis vector to 1 and the
rest of Nn to zero for i = 1, . . . , n. It is left to the reader to show that this is in
fact an isomorphism. We will soon forget that k[x] and k[Nn] are two di�erent
things and identify k[x] with k[Nn] using the isomorphism above.

Let d ∈ N. The Laurent polynomial ring is a polynomial ring where we
allow the exponents to be negative. We denote the Laurent polynomial ring in d
variables by k[t±1]. To be more precise we identify k[t±1] with k[Zd].
Lemma 1.3 k[Nn] and k[Zd] are domains.

Proof. k[Nn] = k[x] is already known to be a domain. To show that k[Zd] is
a domain let a, b ∈ k[Zd] and ab = 0. Multiply this element by a monomial
c ∈ k[Nd] so that ca, cb ∈ k[Nd]. (ca)(cb) = 0 and we must have either ca = 0 or
cb = 0. In both cases we conclude that either a = 0 or b = 0. 2

7

1.3 Toric ideals

Let d, n ∈ N and A ∈ matdn(Z) with columns a1, . . . , an ∈ Zd. A de�nes a
monoid homomorphism in the usual way: A : Nn → Z

d, thereby inducing an
algebra homomorphism π := πA : k[Nn]→ k[Zd].
Remark 1.4 π maps xi to tai . Since π is a homomorphism this de�nes π(f) for
all f ∈ k[x]. Especially, π(xv) = tAv for v ∈ Nn. Another way of saying this is
that π does the substitution π(f) = f(ta1 , . . . , tan) and cancel terms as allowed
in k[t±1].

The kernel of π is an ideal and we denote it IA.
De�nition 1.5 An ideal of this form is called a toric ideal.

We will assume from now that the �eld k has characteristic char(k) 6= 2. This
will not be important right now but it will be in the sections to come. Especially
it is important in theorem 6.17.
Lemma 1.6 A toric ideal is a prime ideal.

Proof. Let αβ ∈ IA. π(α)π(β) = π(αβ) = 0 implying that π(α) = 0 ∨ π(β) = 0
since the Laurent polynomial ring is a domain (lemma 1.3). α or β must be in
IA. 2

Lemma 1.7 A binomial xu − xv ∈ IA if and only if Au = Av where u, v ∈ Nn

Proof. If u, v ∈ Nn satisfy Au = Av then clearly π(xu − xv) = π(xu) − π(xv) =
tAu − tAv = 0. On the other hand if π(xu − xv) = π(xu)− π(xv) = tAu − tAv = 0
the two terms cancel, implying Au = Av. 2

Proposition 1.8 As a k-vector space IA is spanned by

{xu − xv|u, v ∈ Nn ∧ Au = Av}.

Proof. By lemma 1.7 these binomials are in IA. Let ≺ be a term order. Suppose
that IA is not spanned by the binomials. We may choose a polynomial p ∈ I
which is not in the span such that in≺(p) = 1xu is minimal with respect to ≺.
p ∈ ker(π). Hence, xu cancel with at least one other term axv when substituting
using π, a ∈ k. This term is less than xu with respect to ≺ since it is not initial
in p. π(xu) = π(xv). De�ne q = xu − xv. π(q) = 0. π(p − q) = 0 and p 6= q.
in≺(p−q) ≺ in≺(p). Hence, by assumption it is possible to write p−q as a linear
combination of the binomials. p = p − q + xu − xv can be written as a linear
combination as well and this is a contradiction. 2

Corollary 1.9 IA is generated by �nitely many binomials.

8

Proof. The set in proposition 1.8 spans IA. Hilbert's basis theorem tells us that
IA is generated by �nitely many polynomials. Each of these polynomials is a
linear combination of �nitely many binomials from the set. By taking all these
binomials we have a �nite set generating IA. 2

It is useful to rede�ne the term �binomial�:
De�nition 1.10 By a binomial we mean a monomial di�erence xu − xv where
u, v ∈ Nn. A pure binomial is a binomial where xu and xv have no common
factor, that is, for all i: vi = 0 ∨ ui = 0.

By this de�nition 0 = 1 − 1 is a pure binomial. For a vector u ∈ Zn we
introduce the notation pu for the pure binomial xu+ − xu− .
Corollary 1.11 A reduced Gröbner basis for a toric ideal IA with respect to a
term order ≺ consists of binomials.

Proof. We observe that reducing a binomial by a set of binomials using the di-
vision algorithm gives a new binomial (may be zero). The S-polynomial of two
binomials is a binomial (may be zero). Hence, starting with the set of binomials
in corollary 1.9, using Buchberger's Algorithm we produce a reduced Gröbner
basis consisting only of binomials. 2

Remark 1.12 It is worth noticing that the binomials in a reduced Gröbner basis
for a toric ideal are pure: Suppose that xα − xβ was an element in the reduced
Gröbner basis of IA with respect to a term order ≺ and that the terms in xα−xβ
had a common factor xi. xα − xβ = xi(

xα

xi
− xβ

xi
) ∈ IA. Since xi maps to tai by

πA, xi 6∈ IA. IA is prime implying xα

xi
− xβ

xi
∈ IA. The initial term of xα

xi
− xβ

xi
with

respect to ≺ belongs to in≺(IA) and divides xα or xβ non-trivially, contradicting
that xα− xβ is an element in the reduced Gröbner basis of IA with respect to ≺.

We will use the notation G≺(I) to denote the reduced Gröbner basis of I with
respect to ≺. An example of reduced Gröbner bases for a toric ideal is given in
section 7.6.

We have proved that a toric ideal is prime and generated by binomials. The
converse is also true:
Proposition 1.13 A prime ideal in k[x] generated by binomials is toric.

Proof. See section 1.4. 2

Example 1.14 Not all binomial ideals are toric. The ideal I := 〈x2 − y2〉 is not
prime since (x− y)(x+ y) ∈ I but x− y, x+ y 6∈ I.

9

1.4 Prime ideals generated by binomials

In this section it will be proven that a prime ideal generated by binomials is toric.
First we do some observations:
Proposition 1.15 Let I ⊂ k[x] be an ideal generated by binomials. For a poly-
nomial p =

∑
v∈Nn avx

v ∈ I with av ∈ k the sum of its coe�cients
∑

v∈Nn av is
zero.

Corollary 1.16 An ideal I ⊂ k[x] generated by binomials contains no monomi-
als.

Corollary 1.17 If I ⊂ k[x] is a prime ideal generated by binomials then I is
generated by pure binomials.

Lemma 1.18 Let I ⊂ k[x] be an ideal and v ∈ Zn. If pv ∈ I then p−v ∈ I.

Proof. p−v = −pv ∈ I. 2

Lemma 1.19 Let I ⊂ k[x] be a prime ideal generated by binomials and let u, v ∈
Z
n. If pu, pv ∈ I then pv−u ∈ I.

Proof. In section 2.4 a little computation will prove that
xu

+∨v+

xv+ pv −
xu

+∨v+

xu+ pu = xwpv−u

for some w ∈ Nn. xw cannot be in I according to corollary 1.16. The left hand
side is in I and I is prime. Hence, pv−u is in I. 2

Lemma 1.20 Let I ⊂ k[x] be a prime ideal generated by binomials, let u, v ∈ Zn
such that pv, pu ∈ I and let c ∈ N. The binomials pv+u and pcu are in I.

Proof. Follows from the two lemmas above by induction. 2

The hard part is the following:
Lemma 1.21 Let I ⊂ k[x] be a prime ideal generated by binomials. If u ∈ Zn
such that pcu ∈ I for some c ∈ N\{0} then pu ∈ I.

Proof.

pcu = xcu
+ − xcu− = (xu

+ − xu−)(x(c−1)u+

+ x(c−2)u+

xu
−

+ . . .+ x(c−1)u−) ∈ I

If char(k) = 0 the proof is simple: The second factor is not in I by proposition
1.15. Since I is prime, the �rst factor must be in I. pu = xu

+ − xu− ∈ I.

10

In the general case the proof is harder. Let b ∈ N\{0} be the smallest number
such that pbu ∈ I. Suppose b ≥ 2. We write:
pbu = xbu

+ − xbu− = (xu
+ − xu−)(x(b−1)u+

+ x(b−2)u+

xu
−

+ . . .+ x(b−1)u−) ∈ I

with b terms in the second factor of the product. By the assumption the �rst
factor cannot be in I. Since I is prime the second factor has to be in I. Us-
ing the arguments in proposition 1.11 and remark 1.12 we see that a reduced
Gröbner basis of I consists of pure binomials. The second factor reduces to 0
modulo a reduced Gröbner basis G of I. This implies that at least two monomials
xau

++(b−1−a)u− and xa′u++(b−1−a′)u− reduce to the same monomial by a sequence
of reductions with respect to binomials pγ1 , . . . , pγe and pγ′1 , . . . , pγ′e′ in G (making
it possible for terms to cancel). a, a′, e, e′ ∈ N. We may assume that a > a′ and
since there are b terms in the second factor a − a′ < b. From the division algo-
rithm we get the equality: xau++(b−1−a)u−−γ1−...−γe = xa

′u++(b−1−a′)u−−γ′1−...−γ′e′ ⇒
w := au+ + (b− 1− a)u−− a′u+ − (b− 1− a′)u− = γ1 + . . .+ γe− γ′1 − . . .− γ′e′ .
Using lemma 1.20 pw ∈ I. w = (a− a′)u+ − (a− a′)u− = (a− a′)u contradicting
that b was the smallest number such that pbu ∈ I. Hence, b = 1. 2

Proposition 1.22 Let I ⊂ k[x] be a prime ideal generated by binomials and let
u1, . . . , uk ∈ Zn such that pui ∈ I for all i. Let a1, . . . , ak ∈ Q. If

∑
i aiui ∈ Zn

then p∑
i aiui

∈ I.

Proof. Let a ∈ Z be the product of the denominators of a1, . . . , ak. The linear
combination v := a

∑
i aiui is an integer linear combination of u1, . . . , uk, so by

lemma 1.20 pv ∈ I. Since I is prime and generated by binomials and 1
a
v ∈ Zn

lemma 1.21 tells us that p∑
i aiui

= p 1
a
v ∈ I. 2

We now return to the proof of proposition 1.13.
Proof. Let I ⊂ k[x] be the prime ideal generated by binomials. According to
corollary 1.17 we may assume that these binomials are pure. Using Hilbert's basis
theorem as we did in corollary 1.9 we get that I is generated by �nitely many
pure binomials. Denote them by pv1 , . . . , pvk where vi ∈ Zn for all i. We wish to
construct a homomorphism π : k[x] → k[t±1] with ker(π) = I. Furthermore, π
must be induced by a semigroup homomorphism A : Nn → Z

d for some d ∈ N.
A extends to the linear map A : Qn → Q

d. Since pvi must be in ker(π), vi must
be in ker(A) for all i.

Construction: Select an l ∈ N and a subset {u1, . . . , ul} of {v1, . . . , vk} so that
{u1, . . . , ul} is a Q-basis for S = spanQ(v1, . . . , vk). Let d := n − l. Extend the
basis to a basis {u1, . . . , ul+d} for Qn. We now de�ne the linear map A′ : Qn → Q

d

by:
ui 7→ 0 for i ∈ {1, . . . , l}
ul+i 7→ ei for i ∈ {1, . . . , d}

11

where {e1, . . . , ed} is the standard basis of Qd. A′ is given by some matrix A′ ∈
matdn(Q). Instead of looking at A′ we look at the matrix A ∈ matdn(Z) de�ned
by A := sA′ where s ∈ Z is the product of all denominators in A′. A de�nes a map
A : Nn → Z

d. This map induces an algebra homomorphism π : k[x]→ k[t±1].
Now, we just have to show that with this construction ker(π) = 〈pv1 , . . . , pvk〉.

⊃: Clearly, since π is a homomorphism and vi ∈ ker(A) implying pvi ∈ ker(π).
⊂: The left hand side is toric and using remark 1.12 we see that IA = ker(π) is
generated by pure binomials. By lemma 1.7 it su�ces to verify Aa = 0⇒ pa ∈ I
for all a ∈ Zn. Let a ∈ Zn and Aa = 0. a ∈ ker(A) which is generated by
{u1, . . . , ul}. Hence, a =

∑l
i=1 aiui for some ai ∈ Q. For i ≤ l pui ∈ I which

is prime and generated by binomials. Using proposition 1.22 we see that pa ∈ I
and we are done. 2

12

2 Computing generators for a toric ideal

We begin this section by giving a method for computing a generating set for a
toric ideal IA where A is a matrix with non-negative entries. This is done using
Buchberger's algorithm. The properties of toric ideals allow us to delete common
factors in binomials. Common factors are easily deleted when binomials xu − xv
are represented by u − v. This leads us to �the saturating division algorithm�
and �the saturating Buchberger algorithm�. In fact, these algorithms do all their
computations on vectors. Reduction and S-polynomial computation turn out to
be simple vector operations. Another nice property when implementing these
algorithms is that we do not have to do any computations in the �eld k.

2.1 Computing generators for a toric ideal

The algorithm we are about to present is based on the following proposition:
Proposition 2.1 Let A ∈ matdn(N) be a matrix with non-negative entries.

ker(πA) = J ∩ k[x]

where J is the ideal 〈x1 − ta1 , . . . , xn − tan〉 in k[x][t1, . . . , td] = k[Nn+d].

Proof.
⊃: πA extends to an algebra homomorphism πB : k[x][t1, . . . , td] → k[t1, . . . , td]
by tuxv 7→ tutAv for u ∈ Nd, v ∈ Nn. πB is induced by the monoid homomorphism
B : Nn+d → N

d given by (v, u) 7→ u + Av. The generators for J are in ker(πB),
implying J ∩ k[x] ⊂ ker(πB)∩ k[x] = ker(πA) since πA and πB are equal on k[x].
⊂: Let p ∈ ker(πA). p =

∑
imi for some monomials mi ∈ k[x]. Since xi ∼ tai

modulo J each of these monomials mi is equivalent to πA(mi) (mod J), implying
p =

∑
imi ∼

∑
i πA(mi) = πA(

∑
imi) = πA(p) = 0 (mod J). Hence, p ∈ J . 2

Algorithm 2.2
Input: A matrix A ∈ matdn(N) with non-negative entries.
Output: Generators for IA.
Introduce the new variables t1, . . . , td. Compute a Gröbner basis G for J = 〈x1−
ta1 , . . . , xn− tan〉 in k[x][t1, . . . , td] with respect to an elimination term order with
xi ≺ tj. G ∩ k[x] is a generating set for IA (it is in fact a Gröbner basis).

Proof. The algorithm follows from the proposition above and the well known
method for computing elimination ideals [Lauritzen] theorem 6.8.1. 2

Remark 2.3 Recall that an elimination term order with xi ≺ tj means that if
some tj|m1 and m1 ≺ m2 where m1 and m2 are monomials then ti|m2 for some
i. The term order mentioned in the algorithm could be the lexicographic order

13

with x1 ≺ . . . ≺ xn ≺ t1 ≺ . . . ≺ td. Another possible term order is ≺ de�ned
by yα ≺ yβ ⇔ αn+1 + . . . + αn+d < βn+1 + . . . + βn+d ∨ (αn+1 + . . . + αn+d =
βn+1 + . . . + βn+d ∧ yα ≺′ yβ) where α, β ∈ Nn+d and ≺′ can be any term order
on k[Nn+d].

2.2 Representing binomials

Later we will see that some of the algorithms only need to present polynomials
which are binomials. Furthermore, each of these binomials is pure and can be
represented by a vector v ∈ Zn : pv := xv

+ − xv
− . We have already seen in

corollary 1.11 that the Buchberger algorithm produces binomials if it is given
binomials as input. These binomials are not necessarily pure.

However, if the given ideal I is toric and thereby prime we conclude that
xu+w − xv+w ∈ I if and only if xv − xu ∈ I for u, v, w ∈ Nn. (By de�nition
xi 6∈ ker(π), we may factor out one common variable at a time and the conclusion
follows.) For a binomial xu − xv we introduce the notation sat(xu − xv) for the
pure (saturated) binomial pu−v. With this notation we rewrite the observation
above: xu − xv ∈ I ⇔ sat(xv − xu) ∈ I. Making this factorisation during the
computations in the division algorithm and continuing with the binomial factor
gives us the saturating division algorithm 2.5 which of course does not produce
the same output. Later we will see that in this way we only have to represent
pure binomials when computing toric ideals.

Observe that for v ∈ Zn pv = −p−v, so pv and p−v generate the same ideal.
In a sense the sign is not necessary. Given a term order ≺ we make the following
useful decision: a pair of pure binomials p and −p is represented by the vectors
v and −v ∈ Zn in the sense p = ±p±v but we choose the vector u ∈ {v,−v} with
the property ±in≺(p) = ±in≺(−p) = xu

+ as the representative for the pair when
computing. Given a term order ≺ we say that a pure binomial pv 6= 0 is ordered if
in≺(pv) = xv

+ . If pv is a pure non-zero binomial then either pv or p−v is ordered.
Always using the chosen representative u implies that pu is ordered.
Example 2.4 p(−1,1)T = x2−x1 is not ordered with respect to the lexicographic
order with x2 ≺ x1. We will use the vector (1,−1)T to represent ±(x2−x1) when
computing since p(1,−1)T = x1 − x2 is ordered with respect to the term order.

2.3 The saturating division algorithm

In this subsection we will see a new version of the division algorithm doing all its
operations on vectors representing binomials. The changes done in the algorithm
are the ones described in the previous section which are:
• Deleting common factors in the polynomial being reduced.
• Forgetting the sign of the polynomial being reduced.

14

Having made the above decision on the representatives u and v in Zn (pv and pu
are ordered) we observe:
• Testing for divisibility in≺(pv)|in≺(pu) is done by checking that v+

i ≤ u+
i

for all i.
• Given that the divisibility condition is satis�ed reducing pu by pv is done
by: pu′ := pu − in≺(pu)

in≺(pv)
pv. Clearly, this is a binomial, but is it pure? Let's

compute the monomial in pv′ with positive sign. That is the monomial
given by − in≺(pu)

in≺(pv)
tail≺(pv) = −xu

+

xv
+ (−xv−) = xu

+−v++v− . The monomial
with negative sign is −xu− . If the two monomials are relatively prime the
binomial is pure and a representative is (u+− v+ + v−)−u− = (u+−u−)−
(v+−v−) = u−v (or v−u). If the monomials do have a common divisor then
we want to factorise the binomial. Let the greatest common divisor be xw

for some w ∈ Nn. xu+−v++v− − xv− = xw(xu
+−v++v−−w − xv−−w) = xwpu−v

since xu+−v++v−−w and xu−−w are relatively prime. This means that if we
want to continue the computation in the division algorithm with the pure
binomial factor ±pu−v it is also su�cient to use u′ = u− v or u′ = −(u− v)
depending on which vector is the right representative according to the term
order (making pu′ an ordered binomial).

We now present the modi�ed (nondeterministic) division algorithm appear-
ing when using the binomial factor after a reduction and using the observations
above. We call it �the saturating division algorithm� because we only do the
computations on the pure binomial factors. The reader is encouraged to compare
this to the ordinary division algorithm ([Lauritzen] or other) since the ordinary
division algorithm is more abstract and involves terms like �remainder� which we
are going to use in the upcoming arguments, whereas this description is more
�low-level�.
Algorithm 2.5 The saturating division algorithm
Let ≺ be a term order.
Input: Ordered and pure generators for an ideal I = 〈pb1 , . . . , pbk〉 and an ordered
pure binomial pv. (bi 6= 0 for all i.)
Output: A pure binomial pw
while(pv 6= 0 and there is an i such that xb

+
i |xv+

)
{

v := v − bi;
if(pv is not ordered)v := −v;

}
if(pv 6= 0)

while(there is an i such that xb
+
i |xv−)

{

15

v := v + bi;
}
w := v;

Remark 2.6 To see that this is actually the algorithm arising we observe:
It is only possible to transfer a monomial to the remainder two times. After the

�rst loop we transfer xv+ to the remainder and continue reducing −xv− . Letting
u denote v− we see that reduction by bi is done by u := u − bi. The new u still
has non-negative entries. This means that −xv− is substituted by −xv−−bi . That
is we want to continue the division algorithm with −xv−−bi . Before we do that
we saturate −xv−−bi with the remainder obtained so far: sat(xv

+ − xv
−−bi) =

sat(xωpv+bi) = pv+bi with xw = xv
+∧(v−−bi). After saturating we continue the

reduction of the new −xv− . This explains the line v := v + bi.
The essence of this remark is that in the second loop we allow saturation of the
current monomial with the remainder.
Remark 2.7 The algorithm terminates. The �rst loop terminates because the
order of the in≺(pv) decreases with respect to ≺ when we reduce and also when
we saturate. The same is true for xv

− in the second loop. For the ordinary
division algorithm the argument for termination was the same as for this one.

Some important properties of the saturating division algorithm follow imme-
diately:
Proposition 2.8 If the ideal I in the saturating division algorithm is contained
in a toric ideal IA (for example if I = IA)the output pw satis�es

pv ∈ IA ⇔ pw ∈ IA

∀i : in≺(pbi) 6 |in≺(pw) when w 6= 0

∀i : in≺(pbi) 6 |tail≺(pw) when w 6= 0

We will now concentrate on the connection between the saturating division
algorithm and the ordinary one.
Lemma 2.9 If a monomial is transfered to the remainder during the saturating
division algorithm the remainder can never be zero again and the binomial cannot
reduce to zero in this run of the saturating division algorithm.

Proof. Assume that we have transfered a monomial to the remainder. At any
time let −xu denote the part of the binomial that we continue reducing and
let xv be the remainder. (u, v ∈ Nn). By the time that xv is transfered to the
remainder xu ≺ xv (sharp) since xv is the leading term. As in the ordinary division

16

algorithm every time we reduce by a polynomial −xu decreases with respect to
≺ and therefore still xu ≺ xv (sharp). In case of saturation we remove a common
factor but this does not change the relation xu ≺ xv (sharp). Especially, when
xu is transfered to the remainder at the end of the computation xv − xu is not
zero since xu ≺ xv (sharp). 2

Notice, transfers of monomials to the remainder are avoided if and only if the
binomial reduces to 0 during the �rst loop.
Proposition 2.10 If a binomial reduces to 0 by some run of the saturating di-
vision algorithm it also reduces to 0 by some run of the division algorithm.

Proof. By the lemma during the saturating division algorithm we never transfer
a monomial to the remainder. This implies that intermediate computation can
be described as follows: Let p1 be the polynomial we wish to reduce. We de�ne
pi+1 inductively for i > 0. Either pi is zero or there exists an index ai such
that in≺(pbai) divides in≺(pi). If pi is not zero de�ne p′i+1 = pi − xvipbai where
xvi = in≺(pi)/in≺(pbai). De�ne pi+1 = ±sat(p′i+1) = ±x−uip′i+1 for some ui ∈ Nn.
The �±� was written because we might have to change the sign to order the
binomial. Eventually pj = 0 for some j by the assumption.

The ordinary and the saturating algorithm are both nondeterministic. By
making the same choices a1, . . . , aj−1 in the ordinary algorithm we see that it
is possible to reduce the polynomial to zero: Let qi denote the polynomial at
iteration i of the division algorithm. By induction we prove that qi = ±xwipi for
some wi ∈ Nn. Clearly, xw1 = 1 satis�es this. Induction step: Assume the claim
is true for i. in≺(pbai) divides in≺(pi) and therefore also in≺(qi). We let

qi+1 = qi ± xwixvipbai = ±xwi(pi − xvipbai)

= ±xwip′i+1 = ±xwixuisat(p′i+1) = ±xwixuipi+1

By letting xwi+1 = xwixui the claim is true for i + 1. We should notice that the
�±� does not interfere with our argument. By induction the claim is always true
also at the end of the algorithm. This means that if pj is zero then also qj is zero
and we have shown that q1 reduces to zero by some run of the division algorithm.
2

Example 2.11 The converse of proposition 2.10 is false. With the lexicographic
order e ≺ d ≺ c ≺ b ≺ a the polynomial ac − bd reduces to 0 by the division
algorithm modulo {a− b, bc− e, bd− e} but the polynomial reduces to c− d by
any run of the saturating division algorithm.

Instead of proving proposition 2.10 we could have shown that if the saturating
division algorithm reduces a binomial to zero then the binomial �reduces to zero
modulo {pb1 , . . . , pbk}� in the ordinary sense [Lauritzen]. This is actually just
what we need when applying Buchberger's S-criterion in section 2.4. In this way
we would get rid of the randomness in the division algorithm.

17

2.4 The saturating Buchberger algorithm

The vector representation also turns out to be useful when computing the S-
polynomial of two pure binomials. Let u, v ∈ Zn both non-zero and pu and pv be
ordered with respect to ≺. According to the de�nition:

S(pv, pu) =
xu

+∨v+

in≺(pv)
pv −

xu
+∨v+

in≺(pu)
pu =

−x
u+∨v+

xv+ xv
−

+
xu

+∨v+

xu+ xu
−

= x(u+∨v+)−u++u− − x(u+∨v+)−v++v−

= x(u+∨v+)−u − x(u+∨v+)−v = xw(x(u+∨v+)−u−w − x(u+∨v+)−v−w)

= xwp(u+∨v+)−u−w−((u+∨v+)−v−w) = xwpv−u

where xw is the greatest common divisor. Hence, (u+ ∨ v+)− u− w and
(u+ ∨ v+)− v − w are non-negative and have disjoint support, proving the equal-
ity.

Now the idea is to forget the factor xw and use sat(S(pv, pu)) as S-polynomial
instead. For example in Buchberger's algorithm on toric ideals this seems like a
good idea since the saturated S-polynomial must be in the ideal too.
De�nition 2.12 Let pu, pv be ordered pure binomials. The saturated S-polynomial
is de�ned to be: Ssat(pv, pu) = sat(S(pv, pu)) = pv−u

The saturating Buchberger algorithm is the ordinary Buchberger algorithm
where we compute saturated S-polynomials instead of S-polynomials and use the
saturating division algorithm instead of the ordinary one.
Algorithm 2.13 The saturating Buchberger algorithm
Input: A term order ≺ and a set of ordered pure binomials S generating an ideal
an ideal J contained in a toric ideal I.
Output: A reduced Gröbner basis G with respect to ≺ for an ideal J ′ satisfying
J ⊂ J ′ ⊂ I.
G := ∅;
while(S 6= ∅)
{

choose p ∈ S;S := S\{p};
q:= remainder of p mod G using the saturating division algorithm w.r.t. ≺;
if(q 6= 0)
{

for(r ∈ G) S := S ∪ {ordered Ssat(q, r)};
G := G ∪ {q};

18

}
}
minimise and reduce G;

Usually we will run this algorithm on a toric ideal, that is, with J = I. In
this case we should notice that every time we loop G ∪ S generates I = J . If
J 6= I we notice that every time we loop the set G ∪ S generates an ideal that is
containing J and is contained in I.

If the algorithm terminates it is clear that all saturated S-polynomials reduce
to zero by some run of the saturating division algorithm modulo G. By proposi-
tion 2.10 all saturated S-polynomials reduce to 0 by the division algorithm and
therefore also the S-polynomials. By Buchberger's S-criterion this means that the
new set of generators is a Gröbner basis. Termination of the ordinary Buchberger
algorithm is shown by observing that the monomial ideal generated by the initial
terms of the elements in G increases every time we add a new polynomial. The
same argument is valid for the saturating Buchberger algorithm.

Minimising G is just a matter of deleting elements. The reduction of G can
be done by running the division algorithm on each element p ∈ G modulo G\{p}
since this only changes the tail of p. When J is toric (and J = I) this process
only produces pure binomials - if not the pure binomial factor would be in J and
its initial term would divide the initial term of p non-trivially contradicting that
p is an element in a minimal Gröbner basis with respect to ≺. That the produced
binomials are pure allows us to use the saturating division algorithm instead of
the ordinary one for the reduction of G. This gives us a reduced Gröbner basis of
J = I consisting of pure binomials. When the ideal J is not toric it is not clear
if using the division algorithm for reducing G will produce pure binomials so we
should not apply the saturating division algorithm instead of the ordinary one in
this case.

This seems �ne. We may use the saturating Buchberger algorithm on genera-
tors for toric ideals. But how do we use this algorithm to compute generators for
a toric ideal IA? If A has positive entries algorithm 2.2 tells us how. We just have
to prove that the ideal J in the algorithm is toric in order to use the saturating
Buchberger algorithm directly.
Proposition 2.14 Let A ∈ matdn(N) be a matrix with non-negative entries. The
ideal J = 〈x1 − ta1 , . . . , xn − tan〉 in k[x][t1, . . . , td] is toric.

Proof. Continuing the proof of proposition 2.1 it remains to be shown that J =
ker(πB).
⊂: xi − tai ∈ ker(πB).
⊃: By lemma 1.9 ker(πB) is generated by binomials of the form xu

+
tv

+ − xu−tv−

where u ∈ Zn, v ∈ Zd and B(u⊕ v) = 0 meaning Au+ v = 0. We want to prove
that each such binomial is in J . That x ∼ tai modulo J implies xw ∼ tAw for
w ∈ Nn. Hence, computing modulo J we get: xu+

tv
+−xu−tv− ∼ tAu

+
tv

+−tAu−tv−

19

= tAu
++v+ − tAu−+v− . Since Au + v = 0 we get Au+ + v+ − Au− − v− = 0, so

Au+ + v+ = Au− + v−. Hence, xu+
tv

+ − xu−tv− ∈ J . 2

There are two main reasons for using the saturating Buchberger algorithm:
• Saturating binomials during the computation increases the ideal generated
by the initial terms of the generators faster and hopefully thereby the al-
gorithm will terminate earlier.
• The data structures for vector representation are simpler.

20

3 Saturating ideals

Algorithm 2.2 introduced the new variables t1, . . . , td before applying Buchber-
ger's algorithm. The running time of Buchberger's algorithm depends heavily
on the number of variables. Even when using the faster saturating Buchberger
algorithm the method in algorithm 2.2 is slow. In this section we will study
an alternative method for computing generators for a toric ideal given a matrix
de�ning it. We start by de�ning the homogeneous ideals.

3.1 Homogeneous ideals

We de�ne what it means to be homogeneous with respect to a grading:
De�nition 3.1 A polynomial p =

∑
v∈Nn cvx

v ∈ k[x] (cv ∈ k) is homogeneous
with respect to a vector d = (d1, . . . , dn) ∈ Zn if v · d is constant for all cv 6= 0.
The vector d is called a grading and the constant number v ·d is called the d-degree
of p.

Sometimes we will use the words � d-homogeneous� and � d-degree� even when
d ∈ Rn.
De�nition 3.2 An ideal I ⊂ k[x] is homogeneous with respect to a grading d =
(d1, . . . , dn) ∈ Zn if I is generated by a set of polynomials each homogeneous with
respect to d.

De�nition 3.3 Let I ⊂ k[x] be an ideal, d = (d1, . . . , dn) ∈ Zn be a grading and
m ∈ Z. The vector space of polynomials in I of d-degree m together with the zero
polynomial is denoted Im.

Proposition 3.4 Let I ⊂ k[x] be a homogeneous ideal with respect to a non-
negative grading d = (d1, . . . , dn) ∈ Nn. As a vector space I =

⊕∞
i=0 Ii.

Proof. Let f ∈ I. Since I is homogeneous there exist d-homogeneous generators
for I meaning that there exist polynomials hi ∈ I and ai ∈ k[x] such that
f =

∑k
i=1 aihi. hi has non-negative d-degree for all i. We can split each ai into

monomials. Hence, we can write f =
∑k′

i=1 h
′
i with h′i ∈ Ii. (We may assume

that the h′s have di�erent d-degrees, if not we just add the polynomials with the
same degree). The uniqueness of this sum is clear since no terms can cancel in
such a sum. 2

If an ideal I is d-homogeneous it is generated by d-homogeneous polynomials:
Hilbert's basis theorem tells us that we need only a �nite number of elements to
generate I. Each of these polynomials can be written as f = g1h1 + . . . + gkhk
where h1, . . . , hk are some of the d-homogeneous generators of I. Consequently

21

we need only a �nite number of d-homogeneous generators to generate I. Fur-
thermore, having this �nite set of d-homogeneous generators we can compute a
Gröbner basis for I with respect to a term order using the Buchberger algorithm.
Notice that this process only produces d-homogeneous polynomials. Especially,
this means that any reduced Gröbner basis for I consists of d-homogeneous ele-
ments.

By proposition 1.8 a toric ideal IA is homogeneous with respect to any row
vector in A. Hence, it is homogeneous with respect to any vector in the row-space
of A.

3.2 Saturating ideals

We now de�ne the ideal quotients:
De�nition 3.5 Let R be a commutative ring, I ⊂ R an ideal and f ∈ R. We
de�ne

(I : f) = {g ∈ R|gf ∈ I}
(I : f∞) = {g ∈ R|gfn ∈ I for some n ∈ N}

.

This de�nition makes (I : f) and (I : f∞) sets containing I. These sets are
in fact ideals in R:
Proposition 3.6 (I : f) and (I : f∞) are ideals in I.

Proof. Case (I : f∞):Let g, g′ ∈ (I : f∞). Then gfn ∈ I and g′fn′ ∈ I for some
n, n′ ∈ N. This implies that gfn′′ , g′fn′′ ∈ I for n′′ = max(n, n′) and we conclude
(g+ g′)fn

′′ ∈ I and g+ g′ ∈ (I : f∞). Clearly, multiplication by an element from
(I : f∞) gives a new element in (I : f∞). 2

The following lemma taken from [Sturmfels] tells us how to compute ideal
quotients in k[x] with respect to one of the variables:
Proposition 3.7 Let I ⊂ k[x] be a homogeneous ideal with respect to some grad-
ing v ∈ Nn>0. Let ≺ be a term order satisfying (for all v-homogeneous elements
f ∈ k[x]):

xn|in≺(f)⇒ xn|f
If G is a Gröbner basis for I ⊂ k[x] with respect to ≺ consisting of v-homogeneous
elements then

G′ = {f ∈ G : xn 6 |f} ∪ {f/xn : f ∈ G, xn|f}

is a Gröbner basis for (I : xn) with respect to ≺ and

G′′ = {f/xin : f ∈ G, xin|f, xn 6 |f/xin}

is a Gröbner basis for (I : x∞n) with respect to ≺.

22

Proof. We will prove and use only the last claim. Clearly, 〈G′′〉 ⊂ (I : x∞n).
To prove in≺(I : x∞n) ⊂ in≺(G′′) let g ∈ (I : x∞n). We want to show that
in≺(g) ∈ in≺(G′′). There exists an r such that gxrn ∈ I. Since G is a Gröbner
basis for I and gxrn ∈ I there must be an f ∈ G such that in≺(f)|in≺(gxrn) =
in≺(g)xrn. Let R be the number of times that xn divides f . By the choice of
term order this is also the number of times that xn divides in≺(f) since f is
v-homogeneous. in≺(f/xRn)xRn |in≺(g)xrn. in≺(f/xRn) does not contain any xn.
Hence, in≺(f/xRn)|in≺(g). And we are done since f/xRn ∈ G′′. 2

Remark 3.8 Clearly, the condition on the term order ≺ in proposition 3.7 can-
not be satis�ed for all polynomials in k[x]: x divides in≺(x − 1) but not x − 1.
Given a weight vector v ∈ R

n
>0 the graded reverse lexicographic term order

≺grevlex is de�ned by:
xa ≺grevlex xb ⇔ a · v < b · v

∨(a · v = b · v ∧ (∃i : ai > bi ∧ aj = bj for j = i+ 1, . . . , n))

Observe, for v-homogeneous f : xn|in≺grevlex(f) ⇒ xn|f . So ≺grevlex can be used
in the proposition.

We introduce the concept of saturated ideals and show some basic properties:
De�nition 3.9 Let f ∈ k[x]. An ideal I ⊂ k[x] is f -saturated if (I : f∞) = I

Lemma 3.10 Let I be an ideal in k[x] and f, g ∈ k[x] then

(I : (fg)∞) = ((I : f∞) : g∞)

Proof.
⊂: Let h ∈ (I : (fg)∞) ⇒ h(fg)n ∈ I ⇒ (hgn)fn ∈ I ⇒ hgn ∈ (I : f∞) ⇒ h ∈
((I : f∞) : g∞) for some n.
⊃: Let h ∈ ((I : f∞) : g∞) ⇒ hgn ∈ (I : f∞) ⇒ hgnfm ∈ I ⇒ h(gf)max(n,m) ∈
I ⇒ h ∈ (I : (gf)∞) for some n,m. 2

Corollary 3.11 An ideal I ⊂ k[x] is (fg)-saturated if it is f -saturated and g-
saturated.

Proof. We know that (I : f∞) = I = (I : g∞). Hence, I = (I : g∞) = ((I : f∞) :
g∞) = (I : (fg)∞). 2

Remark 3.12 If an ideal I ⊂ k[x] is fg-saturated then it is f -saturated. This
can be seen by using the lemma and the de�nition to get the inclusions:

(I : f∞) ⊃ I = (I : (fg)∞) = ((I : f∞) : g∞) ⊃ (I : f∞)

Lemma 3.13 If I and J are ideals in k[x] satisfying I ⊂ J ⊂ (I : f∞) then
(J : f∞) = (I : f∞)

23

Proof. The inclusion ⊃ follows from I ⊂ J . To prove the other inclusion let
h ∈ (J : f∞) then hfn ∈ J ⊂ (I : f∞) and h times f to some power is indeed in
I. 2

The connection between toric ideals and saturation becomes clear in the fol-
lowing lemma and proposition:
Lemma 3.14 A toric ideal IA ⊂ k[x] is xi saturated.

Proof. We must show that IA ⊃ (IA : x∞i). Let q ∈ (IA : x∞i). That is, there
exists an n ∈ N such that qxni ∈ IA. IA is prime and xi 6∈ IA = ker(πA) since a
monomial maps to a monomial by the de�nition of πA. Hence, q ∈ IA. 2

De�nition 3.15 The lattice kernel of a matrix A ∈ matdn(Z) is the set ker(A)∩
Z
n.

De�nition 3.16 If C ⊂ Zn then we de�ne

JC = 〈pv|v ∈ C〉

Proposition 3.17 C spans the lattice kernel of A (spanZ(C) = Zn ∩ ker(A)) if
and only if (JC : (x1x2 . . . xn)∞) = IA.

Proof. We will prove (and use) only the only-if direction. We must show that
(JC : (x1x2 . . . xn)∞) = IA.
⊃: By proposition 1.8 IA is generated by binomials pu where u ∈ Zn and Au = 0.
Since C spans the lattice ker(A) this means that u can be written u =

∑r
i=1 λiviwith vi ∈ C and λi ∈ Z. We now observe: pa ∈ (JC : (x1 . . . xn)∞)⇒ p−a ∈ (JC :

(x1x2 . . . xn)∞) for a ∈ Zn. Moreover, pa, pb ∈ (JC : (x1x2 . . . xn)∞) ⇒ pa−b ∈
(JC : (x1x2 . . . xn)∞) for a, b ∈ Zn using the identity in the proof of lemma 1.19.
By induction pu ∈ (JC : (x1x2 . . . xn)∞).
⊂: JC ⊂ IA ⊂ (JC : (x1x2 . . . xn)∞). Using lemma 3.13 we see that (JC :
(x1x2 . . . xn)∞) = (IA : (x1x2 . . . xn)∞). Lemma 3.14 tells us that (IA : (x1x2

. . . xn)∞) = IA and the lemma follows. 2

The lemma gives us the following algorithm for computing generators for a
toric ideal:
Algorithm 3.18
Input: A matrix A ∈ matdn(Z) with a strictly positive vector in its row-space.
Output: Generators for IA.
Compute a set C ⊂ Zn spanning the lattice kernel of A. Compute generators for
(JC : (x1x2 . . . xn)∞). These generators are generators for IA.

24

Remark 3.19 Lemma 3.10 tells us that we may saturate JC with respect to one
variable at a time, successively computing

(JC : x∞1), ((JC : x∞1) : x∞2), . . . , (. . . (JC : x∞1) . . . : x∞n) = (JC : (x1 . . . xn)∞)

Proposition 3.7 gives an algorithm for doing this using the Buchberger algorithm.
Saturating the ideal is the most time consuming part of algorithm 3.18. Since the
time for the Buchberger algorithm depends on the exponents of the generators it
would be good to use sets of �small� or �reduced� generators. Such sets (Lenstra
Lenstra Lovász reduced bases) are described in section 4.1 where there also is an
algorithm for �nding a such reduced basis. A by-product of that algorithm is
an algorithm for computing generators for the lattice kernel of A. Example 4.19
shows how this works.
Remark 3.20 It is possible to use the saturating Buchberger algorithm in al-
gorithm 3.18 instead of the ordinary Buchberger algorithm. Using the saturat-
ing Buchberger algorithm we compute generators for ideals (see remark 3.19):
I0, I1, . . . , In each satisfying Ii ⊂ IA and (JC : (x1x2 . . . xi)

∞) ⊂ Ii for i = 0, . . . , n
with I0 = JC . The �rst inclusion is satis�ed since all generators at the be-
ginning are in IA and each new generator is computed by subtracting vector
representatives of existing generators which gives a new element in IA by lemma
1.19. The second inclusion is proved by induction. For i = 0 the left hand
side equals the right hand side. Assume the inclusion is true for i − 1. We
�rst observe that Ii−1 ⊂ Ii and secondly that Ii is xi-saturated: (Ii : x∞i) = Ii.
Thereby, (Ii−1 : x∞i) ⊂ (Ii : x∞i) = Ii. The induction hypothesis tells us that
(JC : (x1x2 . . . xi−1)∞) ⊂ Ii−1 implying (JC : (x1x2 . . . xi)

∞) ⊂ (Ii−1 : x∞i) ⊂ Ii.
At the end i = n and (JC : (x1x2 . . . xn)∞) ⊂ In ⊂ IA. Consequently, the
computed generators for In are generators for IA = (JC : (x1x2 . . . xn)∞).

25

4 Lattices

In this section we will study lattices. The purpose is to �nd a set of small
generators for a lattice suitable for computations. A by-product of this section is a
method for computing generators for the lattice kernel of a matrix A ∈ matdn(Z).

4.1 Lattices

De�nition 4.1 Let n ∈ N and let B = {b1, . . . , bn} be a basis of Rn. The subset
L ⊂ Rn de�ned by L =

∑n
i=1 Zbi = {a1b1 + . . .+ anbn|a1, . . . , an ∈ Z} is called a

lattice of rank n. The set {b1, . . . , bn} is called a lattice basis of L.

A lattice L has many bases (if n > 1). The purpose of this section is to �nd
a basis that is suitable for computations, meaning that the entries of its vectors
are small.
Lemma 4.2 Let L ⊂ R

n be a lattice of rank n. Let A = {a1, . . . , an} and
B = {b1, . . . , bn} be two bases for L. Then |det(a1, . . . , an)| = |det(b1, . . . , bn)|.

Proof. A and B are both subsets of L. Hence, ai and bi can be written:
ai = λi1b1 + . . .+ λinbn

bi = µi1a1 + . . .+ µinan

for i = 1, . . . , n for some M1 = (λij) ∈ matnn(Z) andM2 = (µij) ∈ matnn(Z). We
haveM1M2 = I and therefore det(M1)det(M2) = det(M1M2) = det(I) = 1. Since
the determinants of M1 and M2 are integers they must be +1 or −1. M1 changes
B to A implying det(a1, . . . , an) = det(M1)det(b1, . . . , bn) and the conclusion
follows. 2

The lemma tells us that we cannot choose a basis of arbitrary small vectors
since the absolute value of the determinant must be constant. What is a �small�
basis (with the same |determinant|)? If we were not looking for a lattice basis but
for a basis of Rn the answer would be an orthogonal basis. An almost orthogonal
basis could be suitable for a lattice.

4.2 A reduced basis in R2

Let B = {b1, b2} be a lattice basis of a lattice L ⊂ R2. If we wanted to make
B an orthogonal basis of R2 using the Gram-Schmidt process we would subtract
the projection of b2 onto b1 from b2: b∗2 = b2 − µb1, µ = b1·b2

b1·b1 ∈ R. However, to
make B an almost orthogonal lattice basis of L we subtract b1 from b2 k ∈ Z
times, where k is one of the integers nearest to µ. {b1, b2} is still a basis for the
lattice and hopefully the new b2 is shorter than the old one. This leads us to the
�rst condition for a lattice basis {b1, b2} ⊂ R2 to be reduced:

26

• | b1·b2
b1·b1 | ≤

1
2

It can be satis�ed simply by making the adjustment above. An other condition
could be | b2·b1

b2·b2 | ≤
1
2
. However, we do not require this. Instead we choose the

second condition to be
• ||b2||2 ≥ 3

4
||b1||2

This condition is known as the Lovász condition. Have a look at the �gure
below. If the �rst condition is satis�ed then the second condition almost always
(or always almost) implies | b2·b1

b2·b2 | ≤
1
2
. When computing a reduced basis if the

second condition is not satis�ed we swap b1 and b2 and try to satisfy the �rst
condition. Later we will see that repeating this process eventually leads to a
reduced basis.

Given the vector b1 the �gure shows the re-
gions b2 must be situated in to satisfy the 3
conditions.
• The rectangular region: | b1·b2

b1·b1 | ≤
1
2
.

• The region outside the two circles:
| b2·b1
b2·b2 | ≤

1
2
.

• The region outside the dotted circle:
||b2||2 ≥ 3

4
||b1||2.

4.3 A reduced basis in Rn

We now generalise to Rn. Let B = {b1, . . . , bn} be a basis of Rn spanning a lattice
L. We wish to change B so that the elements of B become almost orthogonal.
We recall the Gram-Schmidt process:

b∗1 := b1

b∗2 := b2 − µ21b
∗
1

. . .

b∗n := bn − µn1b
∗
1 − . . .− µn(n−1)b

∗
n−1

where µij =
b∗j ·bi
b∗j ·b∗j

for 1 ≤ j < i ≤ n. b∗i is the projection of bi onto spanR{b1, . . . ,

bi−1}⊥. A reasonable condition for B to be called reduced is that it is not possible
to �orthogonalise� it further in a way suggested by the Gram-Schmidt process.
That is by letting bi := bi − dµijcbj. This leads us to the condition:
• |µji| = | b

∗
i ·bj
b∗i ·b∗i
| ≤ 1

2
for 1 ≤ i < j ≤ n

27

We now translate the Lovász condition from the 2-dimensional case to the n-
dimensional case. For i ∈ {2, . . . , n} we will require something like ||bi||2 >
3
4
||bi−1||2. But instead of taking the lengths in Rn we require that the projections

of the vectors to spanR{b1, . . . , bi−2}⊥ satisfy the inequality. This gives us the
following de�nition:
De�nition 4.3 A set of linearly independent vectors B = {b1, . . . , bn} spanning
a lattice L is called an LLL-reduced basis of L if:

• | b
∗
i ·bj
b∗i ·b∗i
| = |µji| ≤ 1

2
for 1 ≤ i < j ≤ n

• ||b∗i + µi(i−1)b
∗
i−1||2 ≥ 3

4
||b∗i−1||2 for i ∈ {2, . . . , n}

where b∗i and µij are given by the Gram-Schmidt process.

The second condition is called the Lovász condition.
Remark 4.4 A priori it is not clear that an LLL-reduced basis exists. Its exis-
tence will be shown in the next section.
Remark 4.5 For n > 0 an LLL-reduced basis is not unique.
Remark 4.6 The constant 3

4
in the de�nition does not have to be 3

4
. It can

be chosen anywhere between (1
2
)2 and 1. The constant plays an important role

when showing termination of the LLL-algorithm in the following section. The
proof requires the constant to be less than 1. The other limit is important when
proving properties of reduced bases. In particular we will use it in section 4.5.
For properties of LLL-reduced bases, I refer to [Lenstra,..].

4.4 Lenstra Lenstra Lovász algorithm

Let B = {b1, . . . , bn} ⊂ Rn be a lattice basis of L. In this section we will prove
that there exists a reduced lattice basis of L and we will provide an algorithm for
�nding it.

In the following let at any time µij denote the coe�cients from the Gram-
Schmidt process run on {b1, . . . , bn} and let {b∗1, . . . , b∗n} be the resulting orthog-
onal basis.

The algorithm has two rules for changing the lattice basis B:
1. If for a vector bk and an index i < k we have that |µki| > 1

2
we modify bk by

subtracting each vector bj (1 ≤ j < k) an integral number of times ending
up with a bk for which |µkj| ≤ 1

2
for all j ∈ {1, . . . , k − 1}.

2. If for some i the Lovász condition is not satis�ed we exchange bi and bi−1.
We immediately achieve that their projections to spanR{b1, . . . , bi−2}⊥ sat-
isfy the inequality in the Lovász condition.

28

The �rst rule needs some comments. At �rst we are tempted to modify bk in this
way:

bk := bk − dµk1cb1 − . . .− dµk(k−1)cbk−1;

However, the bj's are not necessarily orthogonal to the b∗j 's, so subtracting bi from
bk might a�ect other µk's than µki. But it cannot a�ect µkj =

b∗j ·bk
b∗j ·b∗j

for j > i since
bi is orthogonal to b∗j . As a consequence the wanted conditions on the µk's can be
obtained by starting with the largest indices �rst. The following loop illustrates
this:
for(i = k − 1, k − 2, . . . , 1)
{

compute the µ's;
bk := bk − dµkicbi;

}
Using the two rules in the right order it is possible to compute a reduced

lattice basis:
Algorithm 4.7 Lenstra Lenstra Lovász
Input: A lattice basis B = {b1, . . . , bn} ⊂ Rn for a lattice L ⊂ Rn
Output: An LLL-reduced lattice basis B = {b1, . . . , bn} ⊂ Rn for L
k := 2;
while(k ≤ n)
{

µ :=coe�cients from the Gram-Schmidt process run on {b1, . . . , bk};
{b∗1, . . . , b∗k} := result of the Gram-Schmidt process;
change bk by rule 1;
recompute µ's and {b∗1, . . . , b∗k};
if(||b∗k + µk(k−1)b

∗
k−1||2 < 3

4
||b∗k−1||2)

{
(bk−1, bk) := (bk, bk−1);
k := k − 1;
if (k = 1)k := 2;

}
else k := k + 1;

}

Remark 4.8 We notice that swapping elements is done in an insertion sort fash-
ion. In fact, if B is an orthogonal basis and for all i 6= j: ||bi||2 ≥ 2||bj||2 or
||bj||2 ≥ 2||bi||2 the algorithm is just a sorting algorithm sorting the vectors by
their lengths.
Proof. Correctness: The following is an invariant which is true every time we
loop (after calculating µ and {b∗1, . . . , b∗k}):

29

• For 1 ≤ i < j < k: |µji| ≤ 1
2

• For 1 < i < k:||b∗i + µi(i−1)b
∗
i−1||2 ≥ 3

4
||b∗i−1||2

• {b1, . . . , bn} is a lattice basis of L
The last claim is true because we only change a vector in {b1, . . . , bn} by

adding an other vector from the same set an integral number of times.
When k = 2 the invariant is obviously true. And the �rst claim in the

invariant remains true at each iteration, either because we decrease k by one and
have not changed the vectors {b1, . . . , bknew−1} or because we adjust bk allowing
us to increase k.

The second claim is true at each iteration:
• In the case where we decrease k the claim involves only the vectors {b1, . . . ,
bkold−2} which we have not changed and which we already know satisfy the
claim.
• In the case where we increase k we �rst observe that we only change the
vector bknew−1 which only is involved in one inequality and this is explicitly
veri�ed by the if-statement.

If the algorithm terminates we must have k = n + 1 and the invariant now tells
us that we actually have found an LLL-reduced basis.

Termination: We de�ne di = det((bj · bl)1≤j,l≤i). This determinant is the same
as the determinant of the product of C and CT ∈ matnn(R), where the �rst i
rows of C are the vectors b1, . . . , bi and the remaining rows are V = {vi+1, . . . , vn},
where V is an orthonormal basis of spanR(b1, . . . , bi)

⊥. Using Gram Schmidt C
can be transformed into a matrix C ′ by simple row operations without changing
the determinant, where the �rst i rows of C ′ are b∗1, . . . , b∗i and the rest are V .
Since the rows of C ′ are orthogonal, det(C) = det(C ′) =

∏i
j=1 ||b∗j ||2. We conclude

that di =
∏i

j=1 ||b∗j ||2.
De�ne D =

∏n−1
i=1 di which is positive. We will now see what happens to D

at each iteration:
• The adjustment of bk does not change the vectors b∗1, . . . , b∗n . Hence, D
does not change either.
• The only di that is a�ected by the swapping of bk−1 and bk is dk−1, since for
the other di's di is a determinant of the same matrix as before or the same
matrix as before with just two rows and two columns exchanged. In the
product �dk−1 =

∏k−1
j=1 ||b∗j ||2� b∗k−1 is substituted by b∗k + µk(k−1)b

∗
k−1 whose

length is less than
√

3
4
of the length of b∗k−1. Hence, the new D must be

< 3
4
times the old D. That is D is decreased every time we decrease k.

30

If we can show that D is larger than a positive constant which only depends
on L, we have shown that k can only be decreased �nitely many times. Since
1 ≤ k ≤ n + 1 we also would know that k can be increased only �nitely many
times. At each iteration we change k. This implies that we cannot iterate for
ever. Hence, the algorithm terminates.

To prove that D is larger than a positive constant it su�ces to show that di
is for all i. If the input vectors are in Zn the proof is simple. The number di is
positive and an integer and we must have di ≥ 1. For the general case I refer
to [Lenstra,..]. Their proof depends heavily on the fact that the set {||x||2|x ∈
L\{0}} has a smallest element. This completes the proof. 2

Remark 4.9 If L ⊂ Z
n using the proof for termination it is easy to give an

upper limit for the number of iterations. Given the input vectors, let B ≥ ||b∗i ||2
for i = 1, 2, . . . , n. D is positive and computed from integers. Hence, D ≥ 1
always. At the beginning di ≤ Bi and consequently D ≤ B

1
2

(n−1)n. Decreasing D
by a factor 3

4
is only possible O(log(D)) times. We conclude that the main loop

of the algorithm terminates in O(n2 log(B)) iterations. (This is not an estimate
for the total running time.)
Remark 4.10 The given algorithm di�ers from the original algorithm given by
[Lenstra,..]. The structure of their loop is slightly di�erent. It does not update
bk completely but only with respect to bk−1 in the case where we swap. This is
su�cient because bk has to be updated with respect to bk−2, . . . , b1, in the next
iteration(s) anyway.

Moreover, they observe that calculating µij at each iteration is not necessary.
Instead, they carefully update some of the µ's each time they modify one of the
basis vectors.

Both di�erences are due to optimisation. I have left out these optimisations
in order to keep the algorithm clear.
Remark 4.11 Because of the divisions the numbers computed in the algorithm
are not necessarily integer. When implementing the algorithm we have to either
use �oating point arithmetics or do the calculations as fractions. However, ob-
serving that diµji ∈ Z when the input is integer vectors [Lenstra,..] modify the
algorithm to compute with integers only. This is a part of their complexity anal-
ysis. We will not go into details here. The algorithm I implemented uses �oating
point calculations and works �ne for our purpose.

4.5 Dependent integer vectors

De�nition 4.12 Let n, l ∈ N and l ≤ n. Let {b1, . . . , bl} be a set of independent
vectors in Rn. The set L de�ned by L =

∑l
i=1 Zbi = {a1b1 + . . .+albl|a1, . . . , al ∈

Z} is called a lattice of rank l. The set {b1, . . . , bl} is called a lattice basis of L.

31

De�nition 4.3 also applies to a lattice of rank l (substituting n by l in the
de�nition).

In this section we see an other version of the LLL-algorithm. The input
must be n integer vectors which we allow to be dependent. The algorithm shows
that these vectors generate a lattice in R

n of rank ≤ n. The algorithm �nds
an independent set of generators for this lattice and �nds dependencies between
input vectors. Let A ∈ matnn(Z) be the matrix with columns b1, . . . , bn. The
algorithm computes a basis of the kernel of A. In fact the computed basis is a
lattice basis of the lattice ker(A) ∩ Zn.

Let us see what happens when we try to run the ordinary algorithm with
the new type of input (n vectors b1, . . . , bn ∈ Zn that may be dependent). Since
the input vectors may be dependent we might have a problem when using the
Gram-Schmidt process. µij =

b∗j ·bi
b∗j ·b∗j

cannot be computed when b∗j is zero. Instead
we de�ne µij = 0 when b∗j is zero. This is the only change we make in the LLL-
algorithm. The set generated by integer linear combinations of the input vectors
is denoted L. A priori we do not know that L is a lattice.

For the new LLL-algorithm we have to consider:
• Is the invariant still valid? Is the output an LLL-reduced basis?
• Does the algorithm terminate?
The last claim of the invariant of course needs to be changed to: {b1, . . . , bn}

generates L. This is true since we only change a generator in {b1, . . . , bn} by
adding an other generator an integral number of times. The rest of the invariant
is still valid and can be shown in the same way as before.

Termination:
Let at any time S = {i ∈ {1, . . . , n}|b∗i = 0}. |S| is constant since the

set {b∗i |b∗i 6= 0} is a basis of spanR{b1, . . . , bn}. Notice that S does not change
when we update by rule 1. Swapping bk−1 with bk only changes b∗k−1 and b∗k.
Notice that if k − 1 ∈ S we cannot swap bk−1 with bk since the corresponding
Lovász condition is true. This implies that a �zero� vector can only be swapped
�upwards�. Therefore the set S can only be changed a �nite number of times. (S
is not changed if k − 1, k ∈ S.)

For each con�guration of S we now show that the algorithm cannot loop
forever. De�ne di =

∏
1≤j≤i,j 6∈S ||b∗j ||2. By an argument analogous to the argument

we used in the ordinary LLL-algorithm we see that di = det(bj · bl)1≤j,l≤i∧j,l 6∈S.
De�ne D =

∏n
i=1 di.As before: updating by rule 1 does not change D since it does not change

{b∗1, . . . , b∗n}. When swapping b∗k−1 is not zero (k − 1 6∈ S). If k 6∈ S dk−1 is the
only di a�ected since for i 6= k − 1 di is the determinant of the same matrix as
before or the same matrix with two rows and two columns exchanged. b∗k−1 is
substituted by b∗k − µk(k−1)b

∗
k−1 which makes the new dk−1 less than 3

4
times the

32

old. In the case k ∈ S dl is only a�ected for l ≥ k − 1 assuming that S does
not change. But all of these are also decreased by at least a factor 3

4
. In both

cases D is decreased by at least a factor 3
4
. Since the input vectors are integer we

conclude that the algorithm terminates by the same argument we used for the
ordinary LLL-algorithm.

We have seen that the algorithm satis�es the invariant and that it terminates.
It is now time to examine its output.

Let b1, . . . , bn be the output. If for some i ∈ {2, 3, . . . , n} we have that b∗i = 0
the Lovász condition tells us:

||b∗i + µi(i−1)b
∗
i−1||2 ≥

3

4
||b∗i−1||2 ⇒ µ2

i(i−1)||b∗i−1||2 ≥
3

4
||b∗i−1||2 ⇒

|µi(i−1)| ≥
√

3

4
∨ b∗i−1 = 0

The �rst cannot be true and we have that b∗i−1 = 0. (Here we needed that the
constant 3

4
had been chosen to be larger than 1

4
.) By induction b∗1 = . . . = b∗i = 0.

Since b1 = b∗1 we also see that b1 = . . . = bi = 0. The number of vectors among
{b∗1, . . . , b∗n} which are zero is m := n− dimR(spanR(b1, . . . , bn)). We have shown
that the �rst m vectors of the output are zero and the remaining ones generate
L. Hence, the remaining n − m vectors must be independent and generate L.
Therefore, L is a lattice of rank n−m with the lattice basis {bm+1, . . . , bn}.

Now let B = (b1, . . . , bn) be the input vectors and B′ = (b′1, . . . , b
′
n) the output.

Let M ∈ matnn(Z) describe the relation between the B′ and the B.

(b′1, . . . , b
′
n)T = M(b1, . . . , bn)T

M is computed from I by simple row operations which only change the sign
of the determinant. Consequently, M is invertible and by Cramer's rule M−1 ∈
matnn(Z). The �rst m rows of M must be in ker(A) where A is the matrix
with columns b1, . . . , bn. The dimension of ker(A) is dimR(Rn)−dimR(im(A)) =
n − dimR(spanR(b1, . . . , bn)) = m and we conclude that span(m �rst rows of
M) = ker(A). This means that we have a method for �nding the kernel of A.
Since M−1 ∈ matnn(Z) it is not just a basis we have found but a lattice basis of
ker(A) ∩ Zn (and we have shown that this is a lattice).

We have shown:
Proposition 4.13 Let n ∈ N and b1, . . . , bn ∈ Zn. The set L = {a1b1 + . . . +
anbn|a1, . . . , an ∈ Z} is a lattice of dimension dimR(spanR(b1, . . . , bn)).

Proposition 4.14 Let n ∈ N and A ∈ matnn(Z). A de�nes a linear map A :
R
n → R

n. ker(A) ∩ Zn is a lattice of dimension n− rank(A).

And we have constructed the algorithm:

33

Algorithm 4.15
Input: A set of vectors B = (b1, . . . , bn) in Zn generating a lattice L of rank k
Output: A set of vectors B′ = (b′1, . . . , b

′
n) and a matrix M ∈ matnn(Z) which

describes B′ in terms of B: (b′1, . . . , b
′
n)T = M(b1, . . . , bn)T . {b′1, . . . , b′n−k} are

zero. {b′n−k+1, . . . , b
′
n} is an LLL-reduced lattice basis of L. The n−k �rst rows of

M is a lattice basis of ker(A)∩Zn where A is the linear map given by the matrix
with columns B.

Example 4.16 Let n = 2, b1 = (r, 0)T , b2 = (s, 0)T for r, s ∈ N\{0}. Running
the new LLL-algorithm on this input we compute:
• ±gcd(r, s)

• a relation ±gcd(r, s) = M21r +M22s where M ∈ mat22(Z)

Almost like the output from the Euclidian algorithm. The only di�erence from
the Euclidean algorithm is in this case that we allow results and intermediate
results to be negative.
Example 4.17 Again, let n = 2. What happens if we run the algorithm on
the vectors b1 = (1, 0)T and b2 = (

√
2, 0)T ? b2 is not integer as required. If the

algorithm terminates we have found an integer dependence between the vectors
and hence shown that √2 is a rational number. Therefore, the algorithm does not
terminate. As mentioned earlier, [Lenstra,..]'s argument for termination of the
original algorithm depended on the fact that {||x||2|x ∈ L\{0}} had a minimal
element. However, this is not the case when b1 = (1, 0)T and b2 = (

√
2, 0)T , so at

least this part of the argument does not apply.
Remark 4.18 The versions of the LLL-algorithm presented here need the num-
ber of given vectors to be equal to the dimension of Rn. However, it is easy to
see that this is an unnecessary restriction and after doing a few adjustments we
may use the algorithms even though the number of vectors is not n.
Example 4.19 Let us see how we use the LLL-algorithm when computing a

generating set for a toric ideal using algorithm 3.18.Let A =

 7 9 3 4
8 7 7 4

15 16 10 8

We run the LLL-algorithm 4.15 on the columns of A. We get the identity:

0 0 0
0 0 0
−1 0 −1

1 −1 0

 =

42 −25 −23 0
−88 52 48 1
−7 4 4 0
−8 5 4 0

 ·

7 8 15
9 7 16
3 7 10
4 4 8

where the rows in the matrix to the right are the input and the rows in the matrix
to the left are the output. The matrix in the middle describes their relation. The

34

dimension of ker(A) is 2. A lattice basis for the lattice kernel of A is the rows
of
(

42 −25 −23 0
−88 52 48 1

)
. Running LLL once again we �nd an LLL-reduced

lattice basis for the lattice kernel of A. It is the rows of:
(
−4 2 2 1
−2 −3 −1 11

)
corresponding to the pure binomials: b2c2d−a4 and d11−a2b3c in k[a, b, c, d]. We
now do the four iterations in algorithm 3.18 by four Gröbner basis computations
using the saturating Buchberger algorithm. The resulting Gröbner basis for IA
consists of 3 elements: {b5c3 − a2d10, a2b3c− d11, a4 − b2c2d}.

35

5 Convex polyhedral sets

This section is a short introduction to the theory of convex polyhedral sets. Some
proofs have been left out.

5.1 Convex polyhedral sets

We start by de�ning the a�ne hyperplanes, closed half spaces and polyhedral
sets:
De�nition 5.1 An a�ne hyperplane in R

n is a set of the form Haα = {x ∈
R
n|a · x = α} where a ∈ Rn\{0} and α ∈ R.

De�nition 5.2 A closed half space of Rn is a subset of Rn of the form H≥aα =
{x ∈ Rn : a · x ≥ α} where a ∈ Rn\{0} and α ∈ R.

De�nition 5.3 A subset K of Rn is called a polyhedral set if it can be written
as a �nite intersection of closed half spaces. K =

⋂d
i=1 H

≥
aiαi

.

We use H>
aα to denote the open half-space H≥aα\Haα.

The polytopes are a special kind of convex polyhedral sets. We have two ways
of characterising them:
De�nition 5.4 A bounded polyhedral set is called a polytope.

Theorem 5.5 A set is a polytope if and only if it can be written as the convex
hull of a �nite set of vectors.

A proof is given in [Grünbaum].
The cones are another interesting kind of convex polyhedral sets:

De�nition 5.6 A polyhedral set K is called a cone if it can be written as K =⋂d
i=1 H

≥
ai0

for some ai ∈ Rn\{0}.

5.2 Faces

De�nition 5.7 Let K be a polyhedral set and let H≥aα be a closed half space
containing K. K ⊂ H≥aα. The intersection K ∩Haα is called a face of K. ∅ and
K are also called faces of K. The set of faces of K is denoted by F(K).

Notice that a face of a polyhedral set is a polyhedral set. Another way of
thinking of a face is as the points in the polyhedral set where a linear function is
maximised. This explains the notation:
De�nition 5.8 Let K be a polyhedral set in Rn and let ω ∈ R. We de�ne

faceω(K) = {x ∈ K|ω · x ≥ ω · y ∀y ∈ K}.

36

Proposition 5.9 faceω(K) is a face of K for all ω ∈ Rn. If a face F of K is
non-empty it can be written as F = faceω(K) for some ω ∈ Rn.

Proof. We want to prove that faceω(K) is a face of K. If faceω(K) = ∅ this is
true by de�nition. If ω = 0, faceω(K) = K ∈ F(K). Assume that faceω(K) 6= ∅
and ω 6= 0. This means that ω assumes its maximum on K. Let α be this
maximum. We claim that faceω(K) = K ∩Hωα = K ∩H−ω−α. The inclusion ⊂
is satis�ed since ω is constant on faceω(K). The other inclusion is satis�ed since
ω assumes its maximum α on Hωα. K ⊂ H≥−ω−α. Hence, faceω(K) is a face of
K.

Let F ⊂ K be a non empty face of K. If K = F we see that face0(K) = F .
If F 6= K there exist ω and α such that F = K ∩Hωα and K ⊂ H≥ωα. We claim
that face−ω(K) = F . Since f 6= ∅ −ω assumes its maximum −α on K and
both face−ω(K) and F = K ∩Hωα are precisely the elements in K assuming this
maximum. 2

The faces of a polytope are described in a simple way:
Lemma 5.10 Let F = faceω(K) be a non-empty face of a polytope K. By
theorem 5.5 may write this as F ∈ F(conv(V)) ⊂ Rn with V = {v1, . . . , vt} ⊂ Rn
and K = conv(V). Let U ⊂ V be the vertices of V in which ω is maximised.
F = conv(U).

Proof. Since F is non empty ω assumes its maximum on K in some point p. This
maximum is also assumed in at least one point of V since we are unable write p
as a convex combination of the V 's and get a larger value of ω in p than in V . We
claim that faceω(K) = conv(U). The inclusion ⊃ is clear. For the other inclusion
let q be a point in faceω(K). q can be written as a convex combination of the
V ′s. Suppose that one of the coe�cients in front of the V \U 's was di�erent from
0 then by linearity of ω the value of ω in p had to be less than the maximum.
This is a contradiction and q can be written as a convex combination of the U 's.
2

The faces are categorised by their dimension and three types of faces are of
particular interest:
De�nition 5.11 Let S 6= ∅ be a subset of Rn. The dimension dim(S) of S is
the smallest number d ∈ N such that S is contained in a d-dimensional a�ne
subspace of Rn.

De�nition 5.12 Let K ⊂ Rn be a polyhedral set of dimension m. Faces of K of
dimension 0 are called vertices of K, faces of dimension 1 are called edges and
faces of dimension m− 1 are called facets of K.

37

Proposition 5.13 Let K =
⋂t
i=1 H

≥
αi0

be an n-dimensional polyhedral set in Rn.

Let F = K ∩ Hβ0 be a facet of K with K ⊂ H≥β0. There exists an index i such
that Hβ0 = Hαi0.

Proof. We start by noticing that a point p ∈ F has to be in at least one of
the a�ne hyper planes Hαj0. Otherwise there would be an open ball around
p ∈

⋂t
i=1 H

>
ai0
⊂ K contained in K contradicting that β assumes its maximum in

K at p.
Suppose that the claimed index i did not exist. For each j = 1, . . . , t we get

F 6⊂ Hαj0 since F ⊂ Hαj0 would imply that Hβ0 = Hαj0 as they contain the same
n − 1-dimensional subset. Choose pj ∈ F\Hαj0. De�ne p := 1

t
(p1 + . . . + pt).

p ∈ F and p is in none of the planes Hαj0 for any j. This contradicts the �rst
observation. 2

Given a polytope K we associate a graph called the edge graph of K to it.
The vertices of the edge graph are the vertices of K and two vertices in the edge
graph are connected by an edge if and only if the corresponding vertices in K are
contained in an edge of K.

5.3 Normal fans

De�nition 5.14 A polyhedral complex ∆ is a �nite collection of polyhedral sets
of Rn such that:

• K ∈ ∆ ∧ F ∈ F(K)⇒ F ∈ ∆

• K,K ′ ∈ ∆⇒ K ∩K ′ ∈ ∆

De�nition 5.15 A polyhedral complex ∆ is a fan if all its nonempty elements
are cones.

To a polytope K we associate a fan called the normal fan of K. It is de�ned
as follows:
De�nition 5.16 Let K ⊂ Rn be a polytope and let F ∈ F(K)\{∅},K 6= ∅. The
normal cone of F at K is NK(F) = {ω ∈ Rn|faceω(K) = F}

Proposition 5.17 NF (K) the closure of a normal cone is a cone.

Proof. By theorem 5.5 K is the convex hull of some set V = {v1, . . . , vt} ⊂ Rn.
By lemma 5.10 F is the convex hull of the subset U ⊂ V . Again by lemma 5.10
a vector ω satis�es faceω(K) = F if and only if ω selects the set U in V . This
gives us the following conditions on ω:

ω · u ≥ ω · v ∀(u, v) ∈ U × V and ω · u > ω · v ∀(u, v) ∈ U × (V \U)

This corresponds to an intersection S of open and closed half spaces. S = NF (K).
We know that S 6= ∅ so by lemma 5.18 the closure of the intersection is a cone. 2

38

Lemma 5.18 Let M = {u ∈ Rn|u · αi = 0 ∧ u · βj ≤ 0 ∧ u · γk < 0 for i =
1, . . . , a, j = 1, . . . , b, k = 1, . . . , c} and K = {u ∈ Rn|u · αi = 0 ∧ u · βj ≤
0 ∧ u · γk ≤ 0 for i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c}. If M 6= ∅ then M = K.

Proof. Let v ∈ M . Clearly, K is closed and contains M implying M ⊂ K. Let
u ∈ K. We just have to show that u ∈M . De�ne for t = 1, 2, 3, . . . the sequence
ut = u+ 1

t
(v−u)→ u for t→∞. u satis�es all equations and inequalities de�ning

K and v satis�es all equations and equalities de�ning M . Hence, ut = 1
t
v+(1− 1

t
)u

satis�es the equations de�ning M and u must be in the closure of M . 2

De�nition 5.19 Let K ⊂ Rn be a polytope. The set of the closures of all normal
cones at K together with the empty set is called the normal fan of K.

Proposition 5.20 The normal fan is a fan.

We will not prove this.
Example 5.21

The polytope K has one face of di-
mension 2, three faces of dimen-
sion 1 (the edges) and three faces
of dimension 0. The normal fan
of the polytope has one cone of di-
mension 0 (the origin), three cones
of dimension 1 (the half lines) and
three cones of dimension 2. Each
nonempty face of the polytope has
an associated normal cone. The
normal cone of the vertex F is the
marked region.

The example suggests that there is a relation between the dimension of a face
F and the dimension of its normal cone NK(F). The last theorem we will need
states this:
Theorem 5.22 Let K ⊂ Rn be a polytope and let M be the map taking non-
empty faces of K to the closed normal cones of K:

M(F) = NK(F) for F ∈ F(K)\{∅}

M maps r dimensional faces to n− r dimensional cones. Two vertices are con-
nected by an edge in the edge graph of K if and only if they map to closed normal
cones sharing a facet. Furthermore, the edge maps to the common facet by M .

The proof is left out. A �rst step is to show that given u, v ∈ Rn we have
the identity faceufacev(K) = facev+εu(K) for ε > 0 su�ciently small. This will
give the relation between the dimensions.

39

6 The Gröbner fan

In this section we will de�ne the Gröbner fan for any polynomial ideal homoge-
neous with respect to a positive grading d = (d1, . . . , dn) ∈ Nn>. But before we do
that we have to extend the concept of initial ideals and then we will study the
connection between reduced Gröbner bases and monomial initial ideals of a toric
ideal homogeneous with respect to a positive grading.

We will see that when the ideal is toric the description of an n-dimensional
cone in the Gröbner fan is very simple in terms of the corresponding reduced
Gröbner basis. Finally, we will construct the state polytope whose normal fan is
the Gröbner fan. The state polytope gives us more information on properties of
the Gröbner fan which will become useful in section 7.

6.1 Lemmas in Sturmfels'

The arguments we are about to use are based on some lemmas. [Sturmfels] uses
these lemmas many times. But he does not state all of them clearly. Most of
them are corollaries of the following proposition based on the division algorithm
and the existence of a Gröbner basis.
De�nition 6.1 Let I ⊂ k[x] be an ideal and let ≺ be a term order. By a standard
monomial we mean a monomial in the set std≺(I) := {xv|v ∈ Nn ∧xv 6∈ in≺(I)}.

Proposition 6.2 Let I ⊂ k[x] be an ideal and let ≺ be a term order. We have
the direct sum:

k[x] = I ⊕ spank(std≺(I))

meaning that (the equivalence classes of) the standard monomials form a basis
for the k-vector space k[x]/I.

Proof. Let G be a Gröbner basis for I with respect to ≺. Let p ∈ k[x]. The
existence of a sum p = p1 + p2 with p1 ∈ I and p2 ∈ spank(std≺(I)) follows from
the division algorithm run on p modulo G with respect to ≺. To prove uniqueness
suppose that p1 + p2 = q1 + q2 with p1, q1 ∈ I and p2, q2 ∈ spank(std≺(I)). Since
p1 − q1 ∈ I also p2 − q2 ∈ I. Suppose that p2 − q2 6= 0 then the initial term of
p2 − q2 must be in in≺(I) contradicting that p2 − q2 ∈ spank(std≺(I)). Hence,
p2 = q2 and p1 = q1. 2

Corollary 6.3 Let I ⊂ k[x] be an ideal and let ≺ and ≺′ be term orders. If
in≺(I) ⊂ in≺′(I) then in≺(I) = in≺′(I)

Proof. in≺(I) ⊂ in≺′(I) implies std≺(I) ⊃ std≺′(I). Both sets are vector space
bases of k[x]/I. Hence, std≺(I) = std≺′(I) and in≺(I) = in≺′(I). 2

40

Corollary 6.4 Let I, J ⊂ k[x] be ideals such that I ⊂ J and let ≺ be a term
order. If I 6= J then in≺(I) 6= in≺(J).

Proof. We must prove that if in≺(I) = in≺(J) then I = J . We know that I ⊕
spank(std≺(I)) = k[x] = J ⊕ spank(std≺(J)). Furthermore, std≺(I) = std≺(J).
Let p ∈ J . Since p ∈ k[x] we can write p = p1 + p2 with p1 ∈ I and p2 ∈
spank(std≺(I)) = spank(std≺(J)). Since I ⊂ J , p1 ∈ J . Hence, we have written
p = p1 + p2 with p1 ∈ J and p2 ∈ spank(std≺(J)). This can also be done by
p = p+ 0 with p ∈ J and 0 ∈ spank(std≺(J)). Uniqueness implies p = p1 ∈ I. 2

Lemma 6.5 If J ⊂ k[x] is a monomial ideal and ≺ is a term order then in≺(J) =
J .

One more proposition we will need is the following. A proof is given in
[Sturmfels] (theorem 1.2).
Proposition 6.6 Let I ⊂ k[x] be an ideal. The set {in≺(I) | ≺ is a term order}
is �nite.

6.2 Initial ideals

Earlier we have studied initial ideals with respect to term orders. Now, we extend
the concept of initial ideals:
De�nition 6.7 Let I ⊂ k[x] be an ideal. Let ω ∈ Rn and p =

∑
v∈Nn cvx

v ∈ k[x]
where cv ∈ k. We de�ne inω(p) the initial form of p with respect to ω to be the
sum of terms cvx

v with cv 6= 0 for which ω · v is maximal. The initial ideal of I
with respect to ω is de�ned to be inω(I) = 〈inω(q)|q ∈ I〉.

De�nition 6.8 A vector ω ∈ Rn is said to be generic for an ideal I if inω(I) is
a monomial ideal. Given I, a generic vector ω ∈ Rn is said to represent a term
order ≺ if in≺(I) = inω(I).

Recall that given an ideal any term order can be represented by a vector in
the following sense ([Sturmfels] proposition 1.11):
Proposition 6.9 Let ≺ be a term order and I ⊂ k[x] an ideal. There exists a
non-negative integer vector ω ∈ Nn such that inω(I) = in≺(I).

Let ≺ be a term order and ω ∈ Rn≥0. Recall the term order ≺ω de�ned by
xv ≺ω xu ⇔ ω · v < ω · u ∨ (ω · v = ω · u ∧ xv ≺ xu)

for u, v ∈ Nn. Notice that for f ∈ k[x] we get that in≺ω(f) = in≺(inω(f)).
The following proposition gives us a method for computing initial ideals. This

method is not only of theoretical importance in proofs but will also be used in
algorithm 7.1 .

41

Proposition 6.10 Let I ⊂ k[x] be an ideal and let G be a Gröbner basis for I
with respect to ≺u where ≺ is a term order and u ∈ Rn≥0. G ′ = {inu(g)|g ∈ G} is
a Gröbner basis for inu(I) with respect to ≺.

Proof. Since G is a Gröbner basis for I we have that in≺u(I) = in≺u(G) =
in≺(G ′) ⊂ in≺inu(I). We must prove that in≺inu(I) ⊂ in≺(G ′). To prove this
we look at one of the generators for the left hand side in≺(f) with f ∈ inu(I)
meaning that f can be written as f =

∑r
i=1 giinu(hi) with gi ∈ k[x] and hi ∈ I.

Rewriting a couple of times we get f =
∑m

i=1 inu(fi) with fi ∈ I. Let fi1 , . . . , fisbe the subset of polynomials such that inu(fi1), . . . , inu(fis) has the same u-degree
as in≺(f).

in≺(f) = in≺(
m∑
i=1

inu(fi)) = in≺(
s∑
j=1

inu(fij))

Applying the following lemma we continue

= in≺inu(
s∑
j=1

fij) = in≺u(
s∑
j=1

fij)

Since ∑s
j=1 fij is in I, in≺(f) ∈ in≺u(I) = in≺u(G) = in≺(G ′). 2

Lemma 6.11 Let u ∈ Rn and h1, . . . , hs ∈ k[x] so that inu(h1), . . . , inu(hs) have
the same u-degree U ∈ R. If

∑s
i=1 inu(hi) 6= 0 then

∑s
i=1 inu(hi) = inu(

∑s
i=1 hi).

Proof. Summing the left hand side we get some monomials with u-degree U .
Summing the sum on the right hand side the same monomials appear as a part
of the sum since monomials only cancel if they have the same u-degree. The
point is, the sum to the right is not 0 and there exist monomials of the maximal
u-degree U . Hence, u selects exactly the terms on the left. 2

Corollary 6.12 For an ideal I ⊂ k[x], a term order ≺ and a vector u ∈ Rn≥0 we
have in≺u(I) = in≺(inu(I)).

Proof. Actually, we have just proven this. Let again G be the reduced Gröbner ba-
sis of I with respect to ≺u and G ′ = {inu(g)|g ∈ G}, implying by the proposition:
in≺inu(I) = in≺(G ′). The right hand side is also equal to in≺u(G) = in≺u(I). 2

Remark 6.13 In proposition 6.10 if G is reduced then so is G ′. G ′ is minimal
because the initial terms in G ′ with respect to ≺ are exactly the initial terms in
G with respect to ≺u which generates in≺u(I) = in≺(inu(I)) minimally. G ′ is
reduced because the non initial terms in G ′ are non-initial terms in G which are
not divisible by any of the minimal generators of in≺(inu(I))since G is reduced.
The coe�cient of the initial terms in G ′ with respect to ≺ are 1 since this was
the coe�cient when they appeared in G as initial terms with respect to ≺u.

42

6.3 Homogeneous ideals

We continue section 3.1 on homogeneous ideals.
If an ideal is homogeneous with respect to a grading then adding the grading

does not change the initial ideal selected by a vector:
Proposition 6.14 Let I ∈ k[x] be a homogeneous ideal with respect to a grading
d = (d1, . . . , dn) ∈ Zn and let ω ∈ Rn be any vector. Then inω(I) = inω+λd(I) for
all λ ∈ R.

Proof. We only need to show that inω(I) ⊂ inω+λd(I) since the other inclusion
follows from this inclusion by suitable choices of ω and λ. Let f ∈ I. Decompose
f into its d−homogeneous components using lemma 3.4 f =

∑m
i=0 fi where fi ∈

Ii. Since there is no cancellation inω(f) =
∑

i∈J inω(fi), where J is a suitable
selection maximising ω. For all i, fi is homogeneous with respect to d, implying
that inω(fi) = inω+λd(fi) ∈ inω+λd(I). Hence, inω(f) ∈ inω+λd(I). We have
shown that the generators of inω(I) are in inω+λd(I). This completes the proof.
2

Later we will see that the proposition gives us important information on the
Gröbner fan which we are about to construct (example 6.20). But for now, we
only need the corollary:
Corollary 6.15 Let I be a homogeneous ideal with respect to a positive grading
d = (d1, . . . , dn) ∈ Nn>0 and let ω ∈ Rn be a weight vector. There exists a positive
vector ω′ ∈ Rn>0 such that inω(I) = inω′(I).

Proof. By the proposition ω′ = ω + λd satis�es inω(I) = inω′(I) for all λ ∈ R.
We just have to choose λ so that ω′ becomes positive. This can be done since d
is positive. 2

6.4 Reduced Gröbner bases and monomial initial ideals

Let IA ⊂ k[x] be a homogeneous toric ideal with respect to a positive grading
d ∈ Nn>0. We will establish a bijection between the reduced Gröbner bases of IA
and the monomial initial ideals of IA assuming that char(k) 6= 2. In the general
case this is not possible as the following example shows.
Example 6.16 The ideal 〈x + y〉 ⊂ k[x, y] has only one reduced Gröbner basis
{x + y} but two monomial initial ideals 〈x〉 and 〈y〉. However, the ideal is not
toric unless char(k) = 2.

The theorem we are going to prove is the following:

43

Theorem 6.17 Let IA ⊂ k[x] be a toric ideal homogeneous with respect to a
positive grading. If char(k) 6= 2 there exists a bijection φ between the reduced
Gröbner bases of IA and the monomial initial ideals of IA de�ned by

φ(G≺(IA)) = in≺(IA)

for all term orders ≺.

We need the following lemma:
Lemma 6.18 Let I ⊂ k[x] be an ideal and G≺(I) and G≺′(I) reduced Gröbner
bases of I with respect to term orders ≺ and ≺′ respectively. If ∀g ∈ G≺(I) :
in≺(g) = in≺′(g) then G≺(I) = G≺′(I).

Proof. We get the inclusion: in≺(I) = in≺(G≺(I)) = in≺′(G≺(I)) ⊂ in≺′(I).
Since an inclusion among monomial initial ideals cannot be strict (corollary 6.3)
we get the equality: in≺′(G≺(I)) = in≺′(I) implying that G≺(I) is a Gröbner
basis with respect to ≺′. If G≺(I) is reduced with respect to ≺ it is reduced with
respect to ≺′. By uniqueness of reduced Gröbner bases G≺(I) = G≺′(I). 2

We return the proof of the theorem:
Proof. Why is φ well de�ned? G≺(I) = {xα1 − xβ1 , . . . , xαt − xβt} consists of
pure binomials. In each binomial one term has coe�cient 1 and the other term
has coe�cient −1. (1 6= −1 if char(k) 6= 2.) By the de�nition of G≺(I) being
reduced we know that the initial term of xαi−xβi with respect to ≺ has coe�cient
1. Hence, in≺(xαi − xβi) = xαi and φ is simply given by φ(G≺(I)) = φ({xα1 −
xβ1 , . . . , xαt − xβt}) = 〈xα1 , . . . , xαt〉.

Surjective: Let inv(IA) be a monomial initial ideal for v ∈ Rn. Let ≺ be
any term order. By corollary 6.15 we may assume that v ∈ Rn>0, implying that
≺v is a term order. inv(IA) = in≺(inv(IA)) = in≺v(IA) (corollary 6.12). Hence,
φ(G≺v(IA)) = inv(IA).

Injective: Suppose φ(G≺(IA)) = φ(G≺′(IA)). That is in≺(IA) = in≺′(IA). We
claim that G≺(IA) = G≺′(IA). To prove this we use lemma 6.18: Let g ∈ G≺(IA).
We know since G≺(IA) is reduced that exactly one of the monomials (being in≺(g))
in g is in in≺(IA) = in≺′(IA). g ∈ IA ⇒ in≺′(g) ∈ in≺′(IA) = in≺(IA). Hence,
in≺(g) = in≺′(g). And the lemma applies. 2

Remark 6.19 Is it in general possible to construct φ if I is not homogeneous
with respect to a positive grading?

No. The toric ideal I = 〈x1x2 − 1〉 ⊂ k[x1, x2] has three initial ideals. 〈x1x2〉
and 〈1〉 = k[x1, x2] are monomial initial ideals of I and 〈x1x2 − 1〉 is the third
initial ideal. But the only reduced Gröbner basis for I is {x1x2 − 1}. A matrix
A de�ning I = IA is A = (1− 1) ∈ mat12(Z).

44

6.5 The Gröbner fan

We now construct the Gröbner fan for an ideal I homogeneous with respect
to a positive grading. R

n is divided into equivalence classes by the relation
r ∼ s ⇔ inr(I) = ins(I) for r, s ∈ Rn. The closure of an equivalence class is
called a Gröbner cone. If c ∈ Rn is a vector we use Kc to denote the Gröbner
cone that is the closure of the equivalence class of c. The Gröbner fan of I is
the set of all Gröbner cones of I together with the empty set. Kc is called the
Gröbner cone at c.
Example 6.20

The Gröbner fan for I = 〈x1 − x2〉 ⊂ k[x1, x2]
consists of three nonempty sets:
• {(x, y) ∈ R2 : x ≥ y}

• {(x, y) ∈ R2 : x = y}

• {(x, y) ∈ R2 : x ≤ y}

corresponding to the initial ideals 〈x1〉, 〈x1 − x2〉
and 〈x2〉.

Since I is homogeneous with respect to the grading (1, 1), the �gure remains
unchanged when translated by (1, 1) by proposition 6.14. Given a matrix A, the
toric ideal IA is homogeneous with respect any vector from the row space of A.
By proposition 6.14 the Gröbner fan remains unchanged when translated by a
vector from the row space of A.

A priori, we do not know that the Gröbner cones are cones nor that the
Gröbner fan is a fan.
Proposition 6.21 A Gröbner cone is a cone.

This proposition follows from the following ([Sturmfels] proposition 2.3):
Proposition 6.22 Let I ⊂ k[x] be an ideal, v ∈ Rn>0 a vector, ≺ a term order
and G≺v(I) the reduced Gröbner basis corresponding to ≺v. For u ∈ Rn>0:

inu(I) = inv(I)⇔ ∀g ∈ G≺v(I) : inu(g) = inv(g)

Proof.
⇐ : We know that in≺u(g) = in≺v(g) for all g ∈ G≺v(I). Using lemma 6.18 we
get G≺v(I) = G≺u(I). Let us compute a Gröbner basis G for inu(I) with respect
to ≺ using proposition 6.10:

G = {inu(g)|g ∈ G≺u(I)}

45

And now let us compute a Gröbner basis G ′ for inv(I) with respect to ≺:
G ′ = {inv(g)|g ∈ G≺v(I)}

We see that the G = G ′ and therefore also that inu(I) = inv(I).
⇒ : inu(I) = inv(I) implies in≺u(I) = in≺v(I) (using corollary 6.12). Let

g ∈ G≺v(I). Since G≺v(I) is reduced exactly one term (being in≺v(g)) of g belongs
to in≺v(I) = in≺u(I). On the other hand g ∈ I ⇒ in≺u(g) ∈ in≺u(I) so in≺v(g) =
in≺u(g). Applying lemma 6.18 we get G≺v(I) = G≺u(I). Now let g be an element
in the reduced Gröbner basis G≺v(I) = G≺u(I). in≺u(g) = in≺v(g). inu(g)
consists of in≺u(g) and some terms h: inu(g) = in≺u(g) + h. inv(g) consists
of in≺v(g) and some terms h′: inv(g) = in≺v(g) + h′. We want to prove that
inu(g) = inv(g) or equivalently h = h′. Since the basis is reduced, no term in
h lies in in≺u(I) and no term in h′ lies in in≺v(I). h − h′ = inu(g) − inv(g) ∈
inu(I) = inv(I). Suppose for a moment that h − h′ 6= 0. Then in≺(h − h′) ∈
in≺inu(I) = in≺u(I) (using corollary 6.12) contradicting that no terms of h and
h′ lies in in≺u(I) = in≺v(I). Hence, h = h′ and inu(g) = inv(g). 2

The proposition does not require I to be a homogeneous ideal, but....
Remark 6.23 If I is homogeneous with respect to a positive grading the vector
u in proposition 6.22 does not have to be positive but can be anywhere in R

n.
This is a consequence of proposition 6.14. Furthermore, even if v ∈ Rn\Rn>0

we can use the proposition with G≺v′ (I) instead of G≺v(I) where v′ is a positive
vector equivalent to v.

Proposition 6.22 and the remark tell us that the equivalence classes of a vector
v is described by a �nite set of inequalities and equations. The inequalities are of
the form u · γi < 0 and the equations are of the form u ·αi = 0 where αi, γi ∈ Rn.
Since an equivalence class is non-empty, lemma 5.18 tells us that its closure is a
cone. This completes the proof of proposition 6.21.
Remark 6.24 The monomial initial ideals correspond exactly to the cones of
dimension n. If inv(I) is monomial the set G ′ in the proof of proposition 6.22
consists of monomials only by remark 6.13. This implies that only inequalities
appear in the description of the equivalence class of v. Hence, the equivalence
class is open in Rn and Kv must be of dimension n.

On the other hand if Kv is of dimension n then so is the equivalence class of v.
All equalities appearing in the description of an equivalence class are nontrivial
so we cannot have any equalities in the description of the equivalence class of v,
implying that G ′ is a set of monomial generators for inv(I).

It still remains to be shown that the Gröbner fan is a fan. I will not prove
this but refer to [Sturmfels].
Theorem 6.25 The Gröbner fan is a fan.

46

6.6 Facets of toric Gröbner cones

Even though we will not prove theorem 6.25 we will carefully study the Gröbner
cones corresponding to monomial initial ideals of toric ideals. It turns out that
these cones are very simple to describe in terms of the corresponding Gröbner
basis.

Let us look at an n-dimensional Gröbner cone for a toric ideal I again homo-
geneous with respect to a positive grading and with char(k) 6= 2. By remark 6.24
we are looking at the closure of an equivalence class corresponding to a monomial
initial ideal inv(I) with v ∈ Rn. Using the bijection φ we have a reduced Gröb-
ner basis G≺(I) = {xα1 − xβ1 , . . . , xαt − xβt} such that in≺(I) = inv(I). Which
n-dimensional Gröbner cone we are looking at is determined by any of v,≺ or
G≺(I) alone.

By corollary 6.15 we may assume that v ∈ Rn>0 since I is homogeneous with
respect to a positive vector. This means that ≺v is a term order. By proposition
6.22 we know that the equivalence class of v is given by:

{ω ∈ Rn|inω(g) = inv(g) for all g ∈ G≺v(I)}

Observe in≺v(I) = in≺(inv(I)) = in≺(in≺(I)) = in≺(I) so since φ is a bijection
G≺v(I) = G≺(I). Furthermore, inv(xαi − xβi) = xαi since taking initial forms of
the elements in G≺v(I) will give the minimal generators of inv(I) = in≺(I) by
remark 6.13. We may rewrite the equivalence class as:

= {ω ∈ Rn|ω · α > ω · β for all xα − xβ ∈ G≺(I)}

Using lemma 5.18 we get
Kv = {ω ∈ Rn|ω · α ≥ ω · β for all xα − xβ ∈ G≺(I)}

with each pure binomial in G≺(I) giving one inequality.
Some of the binomials are irrelevant in the sense that their inequalities can

be left out in the description of Kv. Other binomials are essential. The essential
binomials are called facet binomials. That is, a binomial xαi − xβi is facet if

¬(ω · α ≥ ω · β for all xα − xβ ∈ G≺(I)\{xαi − xβi} ⇒ ω · αi ≥ ω · βi)

The reason that we use the term �facet� for a binomial will become clear in
the following. Let xαi−xβi be a facet binomial. The half space H≥(αi−βi)0 contains
Kv implying that H(αi−βi)0 ∩ Kv is a face of Kv by de�nition. To see that it has
dimension n − 1 we observe that xαi − xβi being a facet binomial implies the
existence of a vector c′ ∈ Rn such that c′ ·αj ≥ c′ · βj for j 6= i and c′ ·αi < c′ · βi.
I is homogeneous with respect to a positive vector implying that the elements
in the reduced Gröbner basis are homogeneous too with respect to this vector
(section 3.1). Adding this positive vector to c′ does not change the inequalities

47

so with out loss of generality we may assume that c′ ∈ Rn>0. Combining v and c′
we get a vector c ∈ Rn>0 satisfying

c · αj > c · βj for j 6= i and c · αi = c · βi

. The set
{ω ∈ Rn|ω · α > ω · β for all xα − xβ ∈ G≺(I)\{xαi − xβi}}

is open implying the existence of a ball around c contained in the set. This ball
intersected with the hyperplane H(αi−βi)0 is n − 1-dimensional and contained in
the face. Hence the face H(αi−βi)0 ∩ Kv is a facet.

Theorem 6.25 suggests that the facet of Kv itself is a Gröbner cone. We will
prove this. By lemma 6.18 G≺c(I) = G≺(I). Using proposition 6.22 and lemma
5.18 we get that the closure of the equivalence class of c is given by

Kc = {ω ∈ Rn|ω · αj ≥ ω · βj for j 6= i and ω · αi = ω · βi}

This is exactly H(αi−βi)0 ∩ Kv.

The projective drawing
shows the locations of
the points v, v′, c and c′.
In this example G≺(I)
has three facet binomi-
als. The forth plane cor-
responds to a facet bino-
mial in G≺′(I).

G≺c(I) = G≺(I) implies inv(I) = in≺(I) = in≺c(I) = in≺(inc(I)) so inv(I) is
a monomial initial ideal of inc(I). Furthermore, a reduced Gröbner basis of inc(I)
with respect to ≺ is {xαi − xβi , xα1 , . . . , xαi−1 , xαi+1 , . . . , xαt} by proposition 6.10
and remark 6.13. Actually inc(I) has only two monomial initial ideals:
Proposition 6.26 Let {xαi−xβi , xα1 , . . . , xαi−1 , xαi+1 , . . . , xαt} be a reduced Gröb-
ner basis with respect to a term order < for an ideal J in k[x] homogeneous with
respect to a positive vector (with char(k) 6= 2). J has exactly two reduced Gröbner
bases and two monomial initial ideals. The other reduced Gröbner basis contains
the binomial xβi − xαi.

48

Proof. J is not a monomial ideal since it has a reduced Gröbner basis containing a
binomial. To prove that J has exactly two reduced Gröbner basis we observe that
computing a Gröbner basis for J with respect to some term order starting with
the basis given we will never introduce any new binomials but only monomials.
S-polynomials are either 0 or a monomial. The same is true for an intermediate
polynomial in the division algorithm. Only when reducing the basis we might
have to change the sign of the binomial to make the coe�cient of the initial term
1. This could introduce the binomial xβi − xαi . The Gröbner basis computation
is completely determined by the relation between xβi and xαi with respect to the
term order. So there are at most two reduced Gröbner bases for J .

Since J is not a monomial ideal a reduced Gröbner basis of J must contain
xαi − xβi or xβi − xαi but not both and not other binomials. Since αi 6= βi the
vector βi−αi separates the two points αi and βi and since J is homogeneous with
respect to a positive vector we get a vector w ∈ Rn>0 inducing a term order <′w
with xαi <′w xβi where <′ can be any term order. Hence, both reduced Gröbner
bases exists. Computing initial ideals with respect to the two term orders < and
<′w by taking out initial terms of the Gröbner bases gives us the two possible
monomial initial ideals of J . Only these two monomial initial ideals exist since
any monomial initial ideal of J is represented by a vector and thereby by a positive
vector and by a term order with either xαi larger than xβi or xβi larger than xαi .
2

The second monomial initial ideal of inc(I) is in≺c′ inc(I) as xαi ≺c′ xβi .
in≺c′ inc(I) = in≺c′c(I) and is also a monomial initial ideal of I. Let ≺′ be a term
order such that G≺′(I) is the Gröbner basis corresponding to this monomial initial
ideal and let v′ be an equivalent vector. That is, in≺′(I) = inv′(I) = in≺c′ inc(I).
Notice that this initial ideal is independent of the choices of c, c′ and ≺′ and so
are G≺′(I) and Kv′ .

We will say that the Gröbner cone Kv′ (or basis G≺′(I)) is adjacent to the
Gröbner cone Kv (or basis G≺(I)) through the facet binomial xαi − xβi . We will
denote the basis adjacent to G≺(I) through xαi−xβi by flip(G≺(I), xαi−xβi). The
relation �is adjacent to� is symmetric in the sense of the following proposition.
This implies the existence of a graph called the graph of I with vertices being the
reduced Gröbner bases of I and two bases being connected if they are adjacent
through some facet binomial. An example of the graph of a toric ideal is given
in section 7.6.
Proposition 6.27 xβi − xαi is a facet binomial of flip(G≺(I), xαi − xβi) and
flip(flip(G≺(I), xαi − xβi), xβi − xαi) = G≺(I).

Proof. in≺′c(I) = in≺′(inc(I)) is a monomial initial ideal of inc(I) with xαi ≺′ xβi
so it must be equal to in≺′(I). By the bijection φ we get G≺′(I) = G≺′c(I).
Another way of �nding a reduced Gröbner basis for inc(I) with respect to ≺′ is

49

by taking initial forms with respect to c of the elements in G≺′c(I). Since xβi−xαi
appears in the resulting Gröbner basis it must be in G≺′c(I) = G≺′(I).

Since c selects only one binomial in G≺′(I) we get the inequalities c ·α > c · β
for all xα−xβ ∈ G≺′(I)\{xβi−xαi} and c ·αi = c ·βi. Since v′ satis�es v′ ·α > v′ ·β
for all xα − xβ ∈ G≺′(I) we may select a su�ciently small δ > 0 such that the
vector w := c− δv′ satis�es w ·α > w ·β for all xα−xβ ∈ G≺′(I)\{xβi −xαi} and
w · αi > w · βi. Hence, xβi − xαi is a facet binomial in G≺′(I).

To �nd flip(flip(G≺(I), xαi − xβi), xβi − xαi) we have to choose two vec-
tors c′new, cnew ∈ Rn according to the de�nition. The vectors c′new := w and
cnew := c satisfy the inequalities they are supposed to (see the paragraph above).
So flip(flip(G≺(I), xαi − xβi), xβi − xαi) is the reduced Gröbner basis of I cor-
responding to the other monomial initial ideal of inc(I) being in≺(I). Hence
flip(flip(G≺(I), xαi − xβi), xβi − xαi) is in fact G≺(I). 2

In section 7.4 we will see that any facet of Kv comes from a facet binomial (remark
7.9).

6.7 The state polytope

Let I be a homogeneous ideal with respect to the positive grading (d1, . . . , dn) ∈
N
n
>0. The purpose of this section is to construct a polytope whose normal fan is

the Gröbner fan of I. This polytope is called the state polytope of I. We will
not prove that its normal fan is the Gröbner fan. A proof is given in [Sturmfels].
De�nition 6.28 Let K,K ′ ⊂ R

n be two polytopes. We de�ne the Minkowski
sum of K and K ′ to be K +K ′ := {p+ p′|p ∈ K, p′ ∈ K ′}.

Using theorem 5.5 we get:
Proposition 6.29 The Minkowski sum of two polytopes is a polytope.

Let M be a monomial ideal and d ∈ N. ∑Md denotes the sum of all vec-
tors a ∈ Nn such that xa ∈ M and has degree d (with respect to the grading
(d1, . . . , dn) ∈ Nn).

De�ne stated(I) = conv{
∑
in≺(I)d}≺ where ≺ runs through all term orders.

stated(I) is a polytope because there are only �nitely many initial ideals. The
state polytope is now de�ned to be the Minkowski sum state(I) =

∑D
d=1 stated(I)

where D is the largest degree of the polynomials in any reduced Gröbner basis of
I. D is well de�ned since it is the largest degree of any of the minimal generators
for a monomial initial ideal of I and there are only �nitely many initial ideals of
I.
Theorem 6.30 Let I be a homogeneous ideal with respect to a positive grading
(d1, . . . , dn) ∈ Nn>0. The normal fan of the state polytope of I is the Gröbner fan
of I.

50

The Gröbner fan given as the normal fan of the state polytope gives us a good
intuitive understanding of the Gröbner fan. The edge graph of the state polytope
is isomorphic to the graph of I when I is toric: two vertices of the state polytope
are connected by an edge if and only if their normal cones share a facet (theorem
5.22) which again is the de�nition for the corresponding reduced Gröbner bases
to be connected in the graph of I (proposition 5.13). However, we will only need
theorem 6.30 in one future proof being the proof that the corresponding graph
can be oriented in a simple way without cycles (proposition 7.10 and its lemma).
Together with the fact that the oriented graph only has one sink and the fact
that there are only �nitely many monomial initial ideals this in turn implies that
the graph is connected.

51

7 Computing the Gröbner fan

Representing the n-dimensional cones of a Gröbner fan of a toric ideal I by
reduced Gröbner bases we are almost ready to compute the Gröbner fan by
traversing the graph of I or equivalently by traversing the edge graph of the state
polytope of I. Actually only two things are missing:
• Given a reduced Gröbner basis, how do we �nd its facet binomials?
• Given a reduced Gröbner basis and a facet binomial, how do we compute
the adjacent Gröbner basis?

After having studied these two problems we present a graph traversal algorithm
doing an exhaustive search. The exhaustive search algorithm has the disadvan-
tage that at any point it needs to store all previously computed Gröbner bases
to traverse the state polytope correctly.

We will also see how we can search for a reduced Gröbner basis with respect to
a speci�ed term order starting with any reduced Gröbner basis by walking in the
graph of I. This is called the Gröbner walk. The paths we walk along searching
for a Gröbner basis with respect to a term order starting at any reduced Gröbner
basis form a tree called the search tree. A better way of computing the entire
Gröbner fan is by doing a tree traversal of the search tree. This method is called
the reverse search method.

In this section we will assume that the ideal I ⊂ k[x] is toric and homogeneous
with respect to a positive grading and that char(k) 6= 2.

7.1 Algorithm �ip

In this section we will study an algorithm given by [Huber,..]. Given a reduced
Gröbner basis G for I and a facet binomial xαi − xβi ∈ G it computes a reduced
Gröbner basis G ′ of I with the property that the Gröbner cone at G ′ share a
facet with the Gröbner cone at G. The facet is the facet determined by the
facet binomial. That is, the algorithm computes G ′ = flip(G, xαi − xβi). The
algorithm is a special case of a general algorithm given by [Sturmfels] (subroutine
3.7). However, the algorithm given by [Huber,..] takes advantage of the fact that
I is toric and furthermore the algorithm never needs to know which term order
G is a Gröbner basis for.
Algorithm 7.1 Flip
Input: The reduced Gröbner basis G = {xαj −xβj : j = 1, . . . , t} for a toric ideal
I with respect to some (unknown) term order ≺ and an index i such that xαi−xβi
is a facet binomial of G.
Output: flip(G, xαi − xβi)
{

52

Old := {xαi − xβi} ∪ {xαj , j 6= i};
Temp := {xβi − xαi} ∪ {xαj , j 6= i};
New := Buchberger(Temp);
G ′′ := {xβi − xαi} ∪ {h− h′, h ∈ New a monomial};
reduce G ′′ to get G ′;

}

The algorithm is explained in the following:
Most of the work has already been done in section 6.6. With the notation

introduced in that section we notice that Old is the reduced Gröbner basis of
inc(I) with respect to ≺. The other reduced Gröbner basis of inc(I) is computed
by making xβi larger than xαi as suggested by Temp and running Buchberger's
algorithm on Temp. This can be done with no further information on the term
order as explained in section 6.6. We store the reduced Gröbner basis in New.

For each monomial h ∈ New let h′ be the remainder when dividing h modulo
G with respect to ≺. Clearly, h − h′ ∈ I. Futhermore, h 6= h′ since h ∈ inc(I)
and at least one initial term of Old divides h since Old is a Gröbner basis of
inc(I) so atleast one initial term in G must divide h. c · αj > c · βj for j 6= i
and c · αi = c · βi guarantees that inc(h − h′) = h. (At least once we must
use xαj − xβj with j 6= i in the division. Otherwise, we would end up with
h−(xαi−xβi)g 6∈ in≺(G) = in≺(I) for some g ∈ k[x]. But h−(xαi−xβi)g ∈ inc(I)
implying in≺(h − (xαi − xβi)g) ∈ in≺(inc(I)) = in≺c(I) = in≺(I). This is a
contradiction.) Hence, in≺′c(h − h′) = in≺′(inc(h − h′)) = in≺′(h) = h implying
in≺′c(G ′′) = in≺′(New) = in≺′(inc(I)) = in≺′c(I). G ′′ must be a basis for I with
respect to ≺′c and reducing we get G ′ = G≺′c(I). (Knowing the initial terms is
su�cient to do the reduction.) Using φ we get G ′ = G≺′(I) as in≺′c(I) = in≺′(I)
by the proof of proposition This completes the algorithm.
Remark 7.2 A very important property of the algorithm is that we never need
to represent any term orders or weight vectors. The algorithm operates on mono-
mials and binomials only.

7.1.1 Implementation details

Just like the Buchberger algorithm for binomials in toric ideals the Buchberger
algorithm used in �ip (see proof of proposition 6.26) can be transformed to an
algorithm working on vectors alone. In this section we will see how we can
represent the polynomials and which operations are needed.

A polynomial in the algorithm is either a pure binomial (including zero) or
a monomial. A pure binomial xα − xβ is represented by the vector α − β and a
monomial xα is represented by the vector α for α, β ∈ Nn.

The division algorithm: The input for the division algorithm is some mono-
mials and possibly one pure binomial.

53

• When a monomial xv is reduced by a monomial xu the result is 0.
• When a binomial xα− xβ with xα as initial term is reduced by a monomial
xu the result is −xβ. Since we are not interested in signs in Buchberger's
algorithm we represent the result by the vector β (monomial xβ). However,
this can never happen since 〈Old〉 is not a monomial ideal.
• When a monomial xv is reduced by a binomial xα − xβ with xα as initial
term the result is the monomial xv − xv

xα
(xα − xβ) = xv−(α−β).

• Testing whether or not one initial terms divides an other initial term is
done in the same way as in the saturating division algorithm 2.5.

Notice that the only binomial ever appearing is the one from the input. Conse-
quently we do not need to know the term order but only which monomial in the
input binomial is initial.

Buchberger's algorithm: No more than one binomial is needed since the input
from the �ip algorithm contains at most one binomial and the division algorithm
does not produce new binomials. The S-polynomial of two monomials is zero.
The S-polynomial of a monomial and the binomial is the monomial given by:
S(xv, xα − xβ) = xα∨v

xv
xv − xα∨v

xα
(xα − xβ) = xβ−α+(α∨v).

In contrast to the saturating Buchberger algorithm this algorithm does the
same computations as the ordinary Buchberger algorithm does but it takes a few
shortcuts sometimes.

7.2 Finding the facets of a Gröbner cone

The following theorem tells us how to determine which binomials in a reduced
Gröbner basis of I are facet binomials.
Theorem 7.3 Let ≺ be a term order and I a toric ideal homogeneous with respect
to a positive grading. A binomial xαi − xβi ∈ G≺(I) = {xα1 − xβ1 , . . . , xαt − xβt}
is a facet binomial if and only if αi−βi cannot be written as a nonnegative linear
combination of {αj − βj|j 6= i}.

This theorem follows immediately from the de�nition of facet binomials in
section 6.6 and Farkas' lemma as it is given in theorem 3.5 of [Papadimitriou]:
Theorem 7.4 Farkas' lemma
Let v, v1, v2, . . . , vt ∈ Rn. The following two statements are equivalent:

• v is a non-negative linear combination of v1, . . . , vt

• for vectors x ∈ Rn : v1 · x ≥ 0 ∧ . . . ∧ vt · x ≥ 0⇒ v · x ≥ 0

54

To prove this theorem [Papadimitriou] uses the termination of the simplex algo-
rithm for solving linear programming problems (see [Papadimitriou]). Inspired
by [Grünbaum] (page 11) we choose another approach:
Proof. It is easy to see that the �rst statement implies the second statement. The
other way around is harder and we will not prove it in the general case but only
under the assumption that the vectors v, v1, v2, . . . , vt are in Rn−1×(R>0). In this
case by a projection the Farkas' lemma states that the two following statements
equivalent (for v, v1, v2, . . . , vt ∈ Rn−1):
• v is a convex linear combination of v1, . . . , vt

• for vectors (x, y) ∈ Rn−1 × R : v1 · x ≥ y ∧ . . . ∧ vt · x ≥ y ⇒ v · x ≥ y

The second statement says that no a�ne hyperplane separates v from v1, . . . , vt.
It remains to be shown that the second statement implies the �rst statement.
That is, if v is not in conv{v1, . . . , vt} then there exists a separating plane. The
distance to v assumes a minimum value in the set conv{v1, . . . , vt} in a point v′
since the set is compact. v′− v is not zero since the minimal distance is not zero.
The a�ne plane with normal v′−v and with equal distance to v and v′ separates
v from the set: In case v = 0 that is v′ · (u − 1

2
v′) ≥ 0 for u ∈ conv(v1, . . . , vt).

Suppose this was false for some u ∈ conv(v1, . . . , vt). Moving along the line
u(t) = tu+ (1− t)v′ inside conv(v1, . . . , vt) we get du(t)·u(t)

dt
= 2(u · u+ v′ · v′− 2u ·

v′)t − 2(v′ · v′ − u · v′). With −2(v′ · v′ − u · v′) = 2((u − 1
2
v′) · v′ − 1

2
v′ · v′) < 0

and thereby du(t)·u(t)
dt

< 0 for t > 0 su�ciently close to 0 contradicting that v′ was
the closest point to 0 = v in conv(v1, . . . , vt). If v 6= 0 we translate the vectors
by −v and repeat the argument. 2

The reason that this weak version of Farkas' lemma su�ces is that the binomi-
als in theorem 7.3 are known to be ordered with respect to some term order and
therefore also with respect to some vector. Hence, the vectors α1 − β1, . . . , αt − βt
are all located in an open half space and the weak Farkas' lemma applies.

Theorem 7.3 allows us to test if a binomial in a reduced Gröbner basis is a facet
binomial by deciding if a linear programming problem is feasible. How to do this
is explained in [Papadimitriou]. I will not go into details but just mention that
my program uses the implementation of the simplex algorithm given in [Huber,..].

7.3 Traversing the graph

Let each vertex in the graph of I be represented by a reduced Gröbner basis.
Given a vertex we use theorem 7.3 and linear programming to determine its
edges and for each edge we use the algorithm �ip 7.1 to compute the adjacent
vertex. Later we will see that the graph is connected implying that given just
one reduced Gröbner basis we can compute the entire graph (Gröbner fan) by a
simple graph traversal:

55

Algorithm 7.5 Traversal by exhaustive search
Input: A reduced Gröbner basis G0 for a toric ideal I.
Output: All reduced Gröbner bases for I stored in S.
S := ∅;
R := {G0};
while(R 6= ∅)
{

Choose a Gröbner basis G from R;
R := R\{G};
Compute the facet binomials of G;
for each facet binomial f of G do
{

G ′ := flip(G, f);
if(G ′ 6∈ S ∪R)R := R ∪ {G ′};

}
S := S ∪ {G};

}

We keep �active� vertices in R and vertices which we are done with in S. Notice
that after having computed G ′ we check that it is not already in the set R ∪ S.
In practice this method is not useful for Gröbner fans with many (more than
100.000) cones as storing the set will take up a lot of RAM. We will give a better
algorithm for traversing the Gröbner fan in the following sections.

7.4 The toric Gröbner walk

The theory has another nice application. Given a single reduced Gröbner basis
G for a toric ideal I we may �nd a reduced Gröbner basis with respect to a term
order ≺ by walking in the graph of I. This is called the Gröbner walk:
Algorithm 7.6 Toric Gröbner walk
Input: A term order ≺ and any reduced Gröbner basis G for a toric ideal I
homogeneous with respect to a positive grading.
Output: The reduced Gröbner basis G ′ for I with respect to ≺.
while(∃xα − xβ ∈ G : xα ≺ xβ)
{

Let xα − xβ ∈ G be a facet binomial satisfying xα ≺ xβ;
G := flip(G, xα − xβ);

}
G ′ := G;

Clearly, if this algorithm terminates we have found the reduced Gröbner basis
we were looking for by proposition 6.18. But there are still two things to consider:

56

• The while condition only guarantees the existence of a binomial not ordered
with respect to ≺. Why is it possible to choose a facet binomial not ordered
with respect to ≺?
• Does the algorithm terminate?
The �rst question is answered by the two following corollaries to Farkas'

lemma:
Corollary 7.7 Let G≺(I) be the reduced Gröbner basis of a toric ideal I with
respect to a term order ≺. For any binomial xα − xβ ∈ G≺(I) the vector α − β
can be written as a non-negative linear combination of the vectors {αi−βi}i where
xαi − xβi is a facet binomial in G≺(I) for all i.

Proof. We will prove this by induction. Fix I and ≺. Let F ⊂ G≺(I) be the set
of facet binomials. Let Pm be the claim:
• There exists a subset S ⊂ G≺(I) of size m with S consisting of non-facet
binomials such that for any binomial xα−xβ ∈ G≺(I), α−β can be written as
a non-negative linear combination of vectors corresponding to the binomials
in S ∪ F .

The claim is true for some m with S = G≺(I)\F . We will prove that Pm ⇒ Pm−1

and thereby that P0 is true being exactly the corallary.
So let Pm be true. Pick xa− xb ∈ S. Since xa− xb is not facet Farkas' lemma

implies that a− b can be written as a non-negative linear combination of vectors
corresponding to binomials in G≺(I)\{xa − xb}:

(1) a− b =
∑
i

γ′i(α
′
i − β′i)

Using Pm we may substitute:
(2) a− b = γ(a− b) +

∑
i

γi(αi − βi)

so that xαi − xβi ∈ F ∪ S\{xa − xb}, γi ≥ 0, γ ≥ 0. We cannot have γ > 1 as
this would contradict the binomials being ordered with respect to a vector in R

n.
Suppose γ = 1 then for the same reason γi = 0 for all i. Hence, in the sum (1) the
vectors α′i−β′i can only be positive linear combinations of a−b. An argument we
have seen earlier gives that these can only be a− b since G≺(I) is reduced. This
is a contradiction as xa− xb is not in G≺(I)\{xa− xb} containing the xα′i − xβ′i 's.

γ must be less than 1. Finally rewriting (2) we get that a−b is a non-negative
linear combination of vectors corresponding to binomials in F ∪ S\{xa − xb}.

To see that Pm−1 is true we �rst use Pm to write α − β as a non-negative
linear combination of vectors corresponding to binomials in F ∪ S. Next we

57

substitute a − b using the �nal non-negative linear combination above giving a
non-negative linear combination of vectors only corresponding to binomials in
F ∪ (S\{xa − xb}). 2

Corollary 7.8 Let I be a toric ideal homogeneous with respect to a positive grad-
ing. Let G be any reduced Gröbner basis for I and ≺ any term order. If for all
facet binomials xαi − xβi ∈ G, xβi ≺ xαi then for any binomial xα − xβ ∈ G,
xβ ≺ xα.

Proof. Let xα−xβ ∈ G. By the corollary we may write γ(α−β) =
∑

i γi(αi−βi)where γ ∈ N>0, γi ∈ N and xαi−xβi is a facet binomial in G and thereby, xβi ≺ xαi

for all i. That is, γα +
∑

i γiβi = γβ +
∑

i γiαi, implying (xα)γ
∏

i(x
βi)γi =

(xβ)γ
∏

i(x
αi)γi . xβi ≺ xαi implies ∏i(x

βi)γi ≺
∏

i(x
αi)γi . If xα ≺ xβ then

(xα)γ ≺ (xβ)γ contradicting (xα)γ
∏

i(x
βi)γi = (xβ)γ

∏
i(x

αi)γi . Hence xβ ≺ xα or
xα = xβ. The monomials cannot be equal since xα − xβ is in the reduced basis.
We must have xβ ≺ xα. 2

Remark 7.9 Corollary 7.7 has another application. It states that the inequal-
ities coming from facet binomials are the only one necessary to describe the
Gröbner cone. Using proposition 5.13 we see that any facet of the Gröbner cone
is given by a facet binomial.

To answer the second question recall that there are only �nitely many mono-
mial initial ideals of the ideal IA (proposition 6.6). If we can show that we cannot
return to a vertex that we have already been at we know that we cannot walk
forever and algorithm 7.6 must terminate. To prove that we cannot cycle in
algorithm 7.6 we need the fact that the Gröbner fan is the normal fan of the
state polytope. To make the argument clear we let S≺(I) denote the graph of I
with the edges oriented in the following way: Let G be a vertex in S≺(I) and let
xα − xβ be a facet binomial in G. G is connected to flip(G, xα − xβ) if xα − xβ
is not ordered with respect to ≺. That is, if xα ≺ xβ. When doing the Gröbner
walk we walk along oriented paths in S≺(I). An example is given in section 7.6.
Proposition 7.10 S≺(I) is acyclic.

Before we prove this proposition we have to show the following lemma:
Lemma 7.11 Let G≺(I) and G≺′(I) be connected in the graph of I. That is,
G≺′(I) = flip(G≺(I), xα − xβ) for some facet binomial xα − xβ ∈ G≺(I). The
corresponding vertices v, v′ ∈ state(I) ⊂ Rn satisfy v − v′ = t(α − β) for some
positive t ∈ R.

Proof. By section 6.6 the corresponding Gröbner cones share a facet F contained
in Hα−β0. By theorem 6.30 and proposition 5.22 F is the closure of the normal
cone of the edge e between v and v′ in state(I). A vector u ∈ Ne(state(I))

58

satis�es faceu(state(I)) = e. Hence, for any vector u ∈ F , u · v = u · v′ as
v, v′ ∈ e. This means that both α− β and v − v′ belong to F⊥. Since F⊥ is one
dimensional we get that v − v′ = t(α− β) for some t ∈ R.

To show that t is positive let ω ∈ Rn be a vector such that inω(I) = in≺(I).
We may assume that ω is positive by corollary 6.15. in≺ω(I) = in≺(inω(I)) =
in≺(in≺(I)) = in≺(I) ⇒ G≺(I) = G≺ω(I). By remark 6.13 the initial form of
an element in G≺ω(I) with respect to ω is the initial term with respect to ≺.
Hence, ω · (α − β) > 0 and ω is in the interior of the Gröbner cone of G≺(I) or
equivalently the normal fan of v. faceω(state(I)) = v. Hence, ω · (v − v′) > 0.
ω · (v − v′) = ω · (t(α− β)) = tω · (α− β) > 0 and we conclude that t > 0. 2

We return to the proof of the proposition:
Proof. Suppose there was a cycle with vertices v0, v1, . . . , vk where vk = v0 and
vj ∈ Rn for all j. Let xαj−xβj be the facet binomial in the reduced Gröbner basis
corresponding to vj and connecting vj to vj+1. By lemma 7.11 0 =

∑k−1
j=0 vj −

vj+1 =
∑k−1

j=0 tj(αj − βj) with tj ∈ R>0. In fact tj ∈ Q since αj, βj, vj ∈ Zn.
Hence, rewriting we get 0 =

∑k−1
j=0 nj(αj − βj) with nj ∈ N>0. For all j we know

that xαj ≺ xβj and therefore xnjαj ≺ xnjβj . But then ∏k−1
j=0 x

njαj ≺
∏k−1

j=0 x
njβj

contradicting ∑k−1
j=0 njαj =

∑k−1
j=0 njβj. 2

7.5 The reverse search tree method

When the state polytope has many vertices the exhaustive search algorithm 7.5
could use up all memory (RAM) on a computer system since it has to store
all previously computed Gröbner bases. The computer would have to swap its
memory to disk. This could slow down the computation since the algorithm
has to compare a newly computed basis to previously computed bases. In this
section an algorithm which does not have to store all the vertices (Gröbner bases)
is presented. It is based on the Gröbner walk from the previous section.

Fix a term order ≺. We will study the paths the Gröbner walk walks along
when searching for G≺(I). We have already seen that the paths are paths in
the oriented graph S≺(I). The Gröbner walk is a nondeterministic algorithm
meaning that we might not take the same path in another run. Making the
algorithm deterministic in each vertex we see that the paths of the Gröbner walk
form a tree. Making the algorithm deterministic can be done in the following way:
when we have to choose a facet binomial there could be several choices of facet
binomials not ordered with respect to ≺. Notice that the terms with coe�cient
1 are distinct since the basis is reduced with respect to the current term order.
Picking the largest one with respect to the lexicographic term order makes the
algorithm deterministic in each vertex. The paths we walk along searching for
G≺(I) now forms a reverse tree. We will denote this tree by T≺(I). An example
is given in section 7.6.

59

The root of the tree is G≺(I) since it has no outgoing edges. Any other vertex
in the graph is connected to G≺(I) by a unique path.

The idea is to traverse the tree T≺(I) starting at the root since we only have
to store a very little set of vertices to keep track on which parts of the tree we
have not been at. Finding the in-going edges for a vertex is done by checking for
each facet binomial if the deterministic Gröbner walk run on the adjacent vertex
would take us to the current vertex in its next step. This involves for each facet
binomial to compute the adjacent reduced Gröbner basis and some of its facet
binomials.

The �nal algorithm for traversing the edge graph of state(I):
Algorithm 7.12 Traversal by reverse search
Input: A term order ≺ and the corresponding reduced Gröbner basis G0 for a
toric ideal I homogeneous with respect to a positive grading.
Output:This algorithm runs through T≺(I) and stores all reduced Gröbner bases
of I in S. Each reduced Gröbner basis is inserted into S only once.
S := ∅;
R := {G0};
while(R 6= ∅)
{

Choose a Gröbner basis G ∈ R;
R := R\{G};
S := S ∪ {G};
compute all facet binomial in G and store them in the set F ;
for all facet binomials xα − xβ ∈ F do
{

if(xβ ≺ xα)
{
G ′ = flip(G, xα − xβ);
compute all facet binomials in G ′ and store them in F ′;
if(∀xα′ − xβ′ ∈ F ′ : xβ′ ≺ xα

′ ∨ xβ ≥lex xα
′
)

{
R := R ∪ {G ′};

}
}

}
}

The easiest way to implement this algorithm is as a recursive procedure for
traversing a subtree. That is, instead of adding G ′ to the set R we call the
procedure recursively on G ′. In this way the set R is given as the recursion stack
and can never be larger than the tree depth.

60

7.6 Example

Let A = (1 2 3 6) ∈ mat14(Z) and let ≺ be the graded reverse lexicographic order
with respect to the vector (1, 2, 3, 6)T and with a6 � b3 � c2 � d. There are 12
reduced Gröbner bases for IA ⊂ k[a, b, c, d]. G1 is the Gröbner basis corresponding
to ≺.
G0 = { b− a2

9 c− a3
10 d− a6

11 }

G1 = { c2 − d 7 ab− c b2 − ac 4 a2 − b 2 }

G2 = { c2 − d 10 a3 − c 11 b− a2
1 }

G3 = { b3 − c2
8 ab− c a2 − b ac− b2 7 d− c2

5 }

G4 = { b3 − d b2c− ad 5 c
2 − d ab− c 6 a

2 − b ac− b2 1 }

G5 = { b3 − d 8 c2 − d 3 ab− c a2 − b ac− b2 ad− b2c 4 }

G6 = { b3 − d 9 a2 − b 11 c− ab 4 }

G7 = { ab− c b2 − ac 3 a2 − b 10 d− c2
1 }

G8 = { ab− c 9 a
2 − b ac− b2 c2 − b3 3 d− b3 5 }

G9 = { a2 − b 0 c− ab 8 d− b3 6 }

G10 = { a3 − c 0 b− a2
7 d− c2

2 }

G11 = { a6 − d 0 b− a2
6 c− a3

2 }

The facet binomials are marked with a box and the subscript tells which
Gröbner basis is adjacent with respect to this facet binomial. The edge graph
of the state polytope is planar since the state polytope is a three dimensional
polytope in R4:

61

To get the oriented graph S≺(I) we order the edges corresponding to facet
binomials with respect to ≺. For each binomial in the list the leading term with
respect to ≺ is underlined telling us which direction of the edge to keep.

After this we delete edges to get the tree T≺(I). The remaining edges corre-
spond to the binomials in the list marked with a double box. For each reduced
Gröbner basis this is the facet binomial (among facet binomials corresponding to
outgoing edges) with largest initial term with respect to the lexicographic term
order.

62

8 Computational experience

The algorithms described have all been implemented in C++. For �nding the
facet binomials the simplex algorithm implementation in [Huber,..] was used. For
further details on the program see appendix C.

In this section we will compare the various methods for computing a reduced
Gröbner basis for a toric ideal and the various methods for traversing the graph
of a toric ideal by running the algorithms on some examples. Most e�ort was
put into experimenting with the traversal algorithms and bringing their running
times down. We will compare my implementation with the one by [Huber,..].
Finally we will see in which parts of the reverse search algorithm most time is
spent.

8.1 Timing examples

The timing experiments were done on a 1333 MHz AMD Athlon processor with
512 MB RAM. The following set of matrices was used. Some of them also ap-
peared in [Huber,..] allowing us to compare the running times.
Pent:

 1 1 1 1 1
0 1 2 1 0
0 0 1 2 1

V23:

 2 1 0 1 0 0
0 1 2 0 1 0
0 0 0 1 1 2

gti: (20 24 25 31

)
PV33:

 3 2 2 1 1 0 0 0 0
0 1 0 2 0 3 2 1 0
0 0 1 0 2 0 1 2 3

K5:

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

K6:

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

A2: (1 2

)
A3: (1 2 3

)
A4: (1 2 3 4

)
A5: (1 2 3 4 5

)
A6: (1 2 3 4 5 6

)
A7: (1 2 3 4 5 6 7

)
A8: (1 2 3 4 5 6 7 8

)
A9: (1 2 3 4 5 6 7 8 9

)
A10: (1 2 3 4 5 6 7 8 9 10

)
A11: (1 2 3 4 5 6 7 8 9 10 11

)

HA3:
(

1 1 1
1 2 3

)
HA4:

(
1 1 1 1
1 2 3 4

)
HA5:

(
1 1 1 1 1
1 2 3 4 5

)
HA6:

(
1 1 1 1 1 1
1 2 3 4 5 6

)
HA7:

(
1 1 1 1 1 1 1
1 2 3 4 5 6 7

)
HA8:

(
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8

)
HA9:

(
1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

)
HM: (247 248 345 15

)

Rm denotes a random matrix with entries in the range 0, 1, . . . ,m− 1.
For computing a single reduced Gröbner basis six di�erent algorithms were

used. The timing results are listed in the following table:

63

A d n kd |G1| |G2| Alg.1 Alg.1b Alg.2 Alg.2b BB GW
PV33 3 9 6 23 18 0.00 0.01 0.02 0.01 0.01 0.03
K5 5 10 5 10 11 0.00 0.01 0.02 0.02 0.02 0.02
K6 6 15 9 30 36 0.01 0.01 0.14 0.12 0.13 0.15
A2 1 2 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00
A3 1 3 2 4 3 0.00 0.00 0.00 0.00 0.00 0.00
A5 1 5 4 14 10 0.01 0.00 0.00 0.00 0.00 0.00
A7 1 7 6 29 21 0.00 0.00 0.00 0.01 0.01 0.01
A9 1 9 8 48 36 0.01 0.00 0.01 0.01 0.01 0.02
A10 1 10 9 59 45 0.00 0.00 0.01 0.01 0.01 0.05
HA3 2 3 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00
HA4 2 4 2 3 3 0.00 0.01 0.00 0.00 0.00 0.00
HA5 2 5 3 6 6 0.01 0.00 0.00 0.00 0.01 0.00
HA7 2 7 5 15 15 0.00 0.00 0.00 0.00 0.01 0.02
HA9 2 9 7 28 28 0.00 0.00 0.01 0.01 0.02 0.04
R10 3 6 3 15 11 0.05 0.05 0.01 0.02 0.01 0.01
R10 4 6 2 18 17 0.20 0.60 0.00 0.01 0.01 0.01
R10 3 7 4 60 38 0.21 0.22 0.04 0.04 0.03 0.06
R10 3 10 7 137 134 2.20 3.99 0.82 1.11 0.88 1.74
R10 4 8 4 58 79 3.13 16.82 0.05 0.06 0.05 0.16
R100 3 6 3 104 90 183.70 946.58 0.05 0.05 0.09 0.12
R5 5 10 5 349 98 37.82 114.75 0.36 0.36 0.88 3.26
R6 5 10 5 790 426 >1000 >1000 19.63 20.92 28.75 276.90
HM 1 4 3 11 4 0.01 0.00 0.00 0.00 0.00 0.00

d is the number of rows in A and n is the number of columns. kd is the
dimension of ker(A) which is equal to the dimension of the state polytope. |G1|
is the number of elements in the reduced Gröbner basis G1 for IA with respect
to the lexicographic order with x1 � x2 � . . . � xn and |G2| is the number of
elements in the reduced Gröbner basis G2 for IA with respect to a graded reverse
lexicographic order with x1 � x2 � . . . � xn. The grading is given by any of the
positive vectors in the row-space of A. The timing results are given in seconds.
The various algorithms are described in section 8.2.

For computing all reduced Gröbner bases of an ideal four di�erent algorithms
were used. The results are shown in the following table:

64

A d n kd vertices edges ES RS ES2 H
Pent 3 5 2 8 8 0.00 0.00 0.00 0.00
V23 3 6 3 29 45 0.01 0.01 0.00 0.01
gti 1 4 3 288 467 0.11 0.05 0.06 0.06
K5 5 10 5 102 255 0.07 0.04 0.05 0.05
K6 6 15 9 195720 951390 11128.00 633.04 - 707.90
A2 1 2 1 2 1 0.00 0.00 0.01 0.00
A3 1 3 2 6 6 0.00 0.00 0.00 0.00
A4 1 4 3 20 31 0.00 0.00 0.01 0.01
A5 1 5 4 114 249 0.04 0.02 0.03 0.03
A6 1 6 5 488 1394 0.37 0.17 0.21 0.21
A7 1 7 6 4073 14800 6.67 3.08 3.67 3.81
A8 1 8 7 25334 111558 71.42 34.36 40.53 42.40
A9 1 9 8 206444 1080981 - 528.43 - -
A10 1 10 9 1499772 9105736 - 6758.00 - -
A11 1 11 10 16379587 114202401 - 36 h - -
HA3 2 3 1 2 1 0.00 0.00 0.00 0.00
HA4 2 4 2 8 8 0.00 0.00 0.00 0.00
HA5 2 5 3 42 65 0.00 0.00 0.01 0.01
HA6 2 6 4 356 778 0.20 0.09 0.12 0.12
HA7 2 7 5 3079 8830 4.40 2.04 2.46 2.50
HA8 2 8 6 40284 147086 120.57 60.46 69.53 73.67
HA9 2 9 7 583371 2615804 - 2017.00 - -
R10 4 6 2 36 36 0.02 0.01 0.01 0.01
HM 1 4 3 904 1546 0.73 0.37 0.41 0.40

�vertices� is the number of vertices in the state polytope and �edges� is the
number of edges. The tested algorithms are: exhaustive search (ES) (algorithm
7.5), reverse search (RS) (algorithm 7.12) and two other algorithms ES2 and H
explained in section 8.3. Except for A11 the timings are given i seconds. ES
and ES2 ran out of RAM on examples A9, HA9, A10 and A11. This made the
program swap to disk thereby slowing it down till it almost stalled. In example
K6 the ES �nished its computations despite the swapping but it clearly a�ected
the running time. ES2 was dropped on this example as I was getting impatient.

8.2 Computing a single reduced Gröbner basis

We have presented two algorithms for computing generators for toric ideals. The
�rst one was algorithm 2.2 denoted �Alg.1� in the �rst table in the previous
section. The second one was algorithm 3.18 denoted �Alg.2�. There were a
few open questions in these algorithms. First of all, in algorithm 2.2 there were
several choices for the elimination term order. The column denoted �Alg.1� shows
the running times when using the lexicographic term order thereby computing
G1. Computing with this order is usually slow. To improve the running time I

65

changed the term order to the one de�ned in remark 2.3 with ≺′ being a graded
reverse lexicographic order. This term order has the advantage of being graded
reverse lexicographic on the two subsets of variables. The resulting Gröbner
basis is G2. The running times are listed in column �Alg.1b�. The graded reverse
lexicographic order is usually faster than the lexicographic one. Surprisingly this
did not improve the running times as expected.

The second algorithm �Alg.2� for computing G2 was expected to be faster
than �Alg.1� since �Alg.2� did not introduce new variables and computed Gröbner
bases with respect to graded lexicographic orders. The experiments con�rm this
on most examples. On large examples the di�erence is huge.

The LLL-algorithm was used two times in �Alg.2�. The �rst time to compute
the lattice kernel of A and a second time to reduce the generators for the lattice
kernel. The second run of the LLL-algorithm is not necessary but was introduced
in hope for smaller exponents in the binomials and thereby faster running times.
The column �Alg.2b� shows timings for the algorithm when the second LLL-
reduction is left out. The table shows that �Alg.2b� is faster than �Alg.2� on some
of our examples. One thing to notice is that the LLL-implementation was not
optimised as well as suggested in [Lenstra,..] (see remark 4.10). This could a�ect
the comparison between �Alg.1� and �Alg.2� (and also the comparison between
�Alg.2� and �Alg.2b�). This might be the case in example K6 where it turns out
that most time is spent during the LLL-reductions.

The Gröbner walk procedure was introduced in order to construct the search
tree T≺(I). In the literature an other reason for introducing it is for quickly
changing one Gröbner basis for a general polynomial ideal into a Gröbner basis
with respect to another term order. The two last columns compare the Gröbner
walk procedure to Buchberger's algorithm for transforming G2 into G1. The
timings include the time for computing G2 using algorithm �Alg.2�. The table
shows that the saturating Buchberger algorithm usually is faster at this on our
examples. One reason for this could be that the implementation of the Gröbner
walk walks rather randomly in the state polytope towards G1. It is possible that
there is a better strategy for choosing facet binomials that would make the search
paths shorter. Compared to �Alg.1� the Buchberger algorithm and the Gröbner
walk are usually faster at computing G1.

The conclusion must be that there still are many questions to be answered.
What is known about computing Gröbner bases for general polynomial ideals
e�ciently in general is not necessarily true for toric ideals. (For example the sat-
urating Buchberger algorithm seems to outperform the Gröbner walk.) However,
three general observations for toric ideals are done:
• Algorithm 3.18 is usually faster than algorithm 2.2
• Even computing a Gröbner basis with respect to a lexicographic order using
algorithm 3.18 combined with the Gröbner walk or the Buchberger algo-
rithm is usually faster than algorithm 2.2

66

• It is sometimes useful to apply the LLL-reduction a second time in algorithm
3.18

8.3 Computing all reduced Gröbner bases

Two methods were presented for computing the Gröbner fan of a toric ideal. Let
us compare the two methods. The ES algorithm

1. does two �ip operations for every edge in the graph.
2. searches the set of previously computed Gröbner bases.
3. determines all facet binomials for every reduced Gröbner basis once.

The RS algorithm
1. does one �ip operation for every edge in the graph.
2. determines at least one facet binomials after each of these �ip operations.
3. determines all (correctly ordered) facet binomials of the computed Gröbner

fan if the edge leading to the compute Gröbner basis is in the tree T≺(I).
That is, it determines all correctly ordered facet binomials of each vertex.

One obvious improvement of ES is orienting the graph to cut down the number
of �ips and searches in the set of previously computed bases. This cuts down the
running time as shown in column ES2.

The choice is between the ES2 algorithm doing a lot of searching when the
graph is large and the RS algorithm determining a lot of facet binomials. On
small examples they are almost equally fast. On large examples however ES2
uses too much memory to run on the test computer or spends to much time
searching (K6).

It would be nice if we also were able to cut down the memory used to store
the set of computed Gröbner bases. This can be done by deleting a Gröbner basis
when all the in-going edges have been traversed. This will also cut down the time
used for searching. An attempt to do this is algorithm H. Unfortunately this
introduced slightly more complex data structures and did not cut down memory
usage to an acceptable level. This is because the set containing the previously
computed Gröbner bases still has to be large when the kernel dimension of A
is high. Again, too much space is used and too much time is spent searching.
Example K6 is very good at illustrating the di�erences among the algorithms.
On this example ES and ES2 start swapping while H does not.

The reverse search algorithm is clearly the best. Its memory usage is below 2
MB on all examples.

67

8.4 Compared to TiGERS

TiGERS is the implementation of the reverse search and exhaustive search algo-
rithms written in C by [Huber,..]. My implementation and their implementation
are very much alike. They both use the �ip algorithm and the same traversal al-
gorithms and they use the same simplex algorithm implementation. In addition
they both use a criterion based on the following remark to easily rule out the
possibility of a binomial being a facet binomial.
Remark 8.1 Let G = {xa1 − xb1 , . . . , xat − xbt} be a reduced Gröbner basis
for a toric ideal I. If xa1 − xb1 is a facet binomial then by proposition 6.10
{xa1−xb1 , xa2 , . . . , xat} is a Gröbner basis for the ideal inc(I) (using the notation
introduced in section 6.6). By the Buchberger's S-criterion it is easy to check if
this is a Gröbner basis since the initial terms are known. So if the answer is no
then xα1−xβ1 cannot be facet. This dramatically reduces the number of possible
facet binomials. A set of 60 binomials will typically reduce to 10. This is very
good not only because we have to call the simplex algorithm less often but also
because the size of the linear programming problems is smaller. It should be
noticed that this test does take some time to perform.

Despite the similarities the running times di�er with a factor 10-120 with
the factor increasing when the size of the problem increases. Listed in order of
importance are the reasons why my implementation is faster:
• The C++ programming language o�ers a lot of easy-to-use data struc-
tures. The implementation of these is e�cient. Especially, this was useful
for e�cient lookup to see if a Gröbner basis had already been seen in the
exhaustive search and for sorting elements of a Gröbner basis before com-
paring with another one. In TiGERS not all structures were e�ciently
implemented possibly because it is a lot of work doing in C.
• The timings of TiGERS in [Huber,..] were done in 1999 on a 450 MHz Intel
Pentium processor. Today computers are approximately 3-4 times faster.
The tests of my implementation were done on a 1333 MHz AMD Athlon.
• When testing whether two monomials are ordered with respect to the
graded reverse lexicographic term order it is worth noticing that the mono-
mials compared always are terms in a binomial being homogeneous with
respect to the row-space of A. Hence, the degree test can be omitted and
we only have to test �reverse lexicographically�. Usually this means that
we only have to look at very few of the entries in the vector de�ning the
binomial. TiGERS does not take advantage of this.
• Since the division algorithm is used a lot we are interested in e�ciently
determining if the initial term of one polynomial divides the initial term

68

of an other polynomial. As suggested by [Hosten,..] we store with each
polynomial (monomial or binomial) a bit-vector of n-bits describing the
support of the vector corresponding to the initial term. Storing the bit
vector in a word it is fast to check if the support of one initial term is
contained in the support of the initial term of an other polynomial using
boolean arithmetics. This is a necessary condition for the �rst initial term
to divide the second.
• TiGERS does not take full advantage of the structure of toric ideals. For
example it uses two vectors for each binomial even though the binomials
(at least when doing the graph traversal) are pure and therefore can be
represented by a single vector.

Even though the list above is ordered it is hard to tell how much a single trick
improves the running time as this depends on the order in which the tricks are
added to the program.

All together this results in a factor 120 on the largest examples. Probably a
factor 30-40 if run on a 450 MHz processor. The faster implementation allows
us to compute the Gröbner fan of ideals (IA10 and IA11) which [Huber,..] had to
drop.

8.5 Where is the time spent?

Using a performance analyser program it was possible to �nd the parts of the
program in which most time was spent. In example A8 using the reverse search
algorithm the performance analyser program gave the following result:

Simplex algorithm 25 %
Memory management 19 %
Data structures 11 %
Vector/binomial class 8 %
Division algorithm 12 %
Flip algorithm 22 %
Total 97 %
The listed program parts are the ones where most time was spent. Since the

simplex algorithm is an isolated part of the program depending on no other parts
the 25 % is a reliable estimate for the time spent in this algorithm. The rest of
the listed subroutines are parts of either the �ip algorithm or the tree traversal
algorithm. The import thing to notice is that no single routine takes a large part
of the time. Hence, we cannot improve the running time dramatically without
doing some major changes.

69

8.6 Reliability

The program gets the same results as TiGERS does on the common examples.
Most parts of the program are purely combinatorial and the probability for an
error in the implementation in these parts is small. However, the LLL-algorithm
and the simplex algorithm use �oating-point arithmetics. It cannot be ruled out
that especially the simplex algorithm might do a round o� error on some input
data leading to a wrong result. On the examples listed this was not detected.
Even though an error has not been detected it is possible that an error occurred
� the increase from the size of state(IA10) to the size of state(IA11) sure looks
suspicious. One way to get around these errors is by using a library doing calcu-
lations as fractions. This has not been done. I expect TiGERS to have the same
limitations.

70

9 Postscript

The toric ideals were de�ned and their basic properties were discovered. Two
algorithms for computing them were presented. We had to introduce the ideal
quotients and the LLL-reduction techniques for the second algorithm.

After an introduction to polyhedral theory the Gröbner fan was de�ned for
positive-homogeneous ideals. For toric ideals we saw that there was a bijection
between the n-dimensional Gröbner cones and the reduced Gröbner bases. For
toric ideals this lead us to the de�nition of the graph of I whose vertices were
reduced Gröbner bases. In general the Gröbner fan is the normal fan of a polytope
called the state polytope of I. We did not prove this but referred to [Sturmfels].
This connection told us that the graph of I was isomorphic to edge graph of the
state polytope of I.

To walk along edges in the edge graph the �ip algorithm was introduced.
Combined with the simplex algorithm this gave a method for traversing the graph
of the ideal. In this way an exhaustive search could be used to compute all
reduced Gröbner bases since the graph was connected. A reverse search method
for traversing the graph was presented with the advantage that it did not need
to store the entire graph.

The algorithms were implemented and tested on some examples. It was di�-
cult to say something general about the time spent on computing the �rst reduced
Gröbner basis. The e�ort was but into making the traversal algorithms fast. Fi-
nally we saw how a few tricks could improve the speed. Among those were some
taking advantage of the structure of toric ideals. Other improvements came from
computer science.

71

A Sources

In this section I will brie�y describe where the ideas and material for the various
parts came from. The references given are not to where the ideas original came
from but to where I got them. I have presented the material in a way I �nd
suitable for our purpose. And I have given the proofs the way I understand
them. Sometimes lemmas and propositions were added to �ll out some gaps.

In section 1 the group ring is a standard construction in algebra. The proper-
ties of toric ideals in section 1.3 and their proofs were given in [Sturmfels]. The
hint on the back of [Sturmfels] : �They (toric ideals) are characterized as those
prime ideals that are generated by monomial di�erences� lead to proposition 1.13
and the proof in the following section.

The method in section 2 for computing generators of a toric ideal was given
in [Sturmfels] without proof. Representing binomials by vectors was suggested
several places in the literature. [Bigitta,..] de�ne the saturating remainder and
the saturating S-polynomial formally and leaves many proofs to the reader. My
covering of this has very little in common with [Bigitta,..]. I have tried to describe
the saturating division algorithm, the saturating Buchberger algorithm and their
applications in detail.

Saturating ideals to compute generators was suggested by [Hosten,..]. Section
3 consists of propositions given by [Bigitta,..] and [Sturmfels]. The de�nitions
and properties of homogeneous ideals are standard.

Section 4 is based on [Lenstra,..] and [Cohen]. The proofs are slightly di�er-
ent but essentially the same as in [Lenstra,..] and [Cohen]. The application for
computing lattice bases of integer kernels was given in [Cohen].

Section 5 was originally based on [Grünbaum] but changed to �t the applica-
tion in a less theoretical way, thereby introducing material from [Sturmfels].

Subsections 6.1, 6.2 and 6.3 consist of various needed propositions. Some were
implicitly given by [Sturmfels] and some had incomplete proofs in [Sturmfels].
[Huber,..] claimed the existence of the bijection between the reduced Gröbner
bases of a toric ideal and its initial ideals. The construction of the Gröbner fan
and the state polytope was given in [Sturmfels]. For the description of the toric
Gröbner cone I was inspired by [Huber,..].

Section 7 was based on [Huber,..]. Some gaps were �lled out here.

72

B Notation

• N = {0, 1, 2, . . .}

• A> = {a ∈ A|a > 0}

• A ⊂ B : A is a subset of B
• a ≺ b : a is strictly less than b with respect to the term order ≺
• k[x] = k[x1, . . . , xn]

• for v ∈ Zn: xv =
∏n

i=1 x
vi
i

• for polynomial p and a term order ≺: in≺(p) is the initial term of p.
• for polynomial p and a term order ≺: tail≺(p) = p− in≺(p)

• in≺(G) = 〈in≺(g1), . . . , in≺(gt)〉 where G = {g1, . . . , gt}

• G≺(I) the reduced Gröbner basis for I with respect to the term order ≺
• for v ∈ Zn: v+ ∈ Nn, v+

i = max(vi, 0)

• for v ∈ Zn: v− ∈ Nn, v−i = −min(vi, 0)

• observe v = v+ − v−

• for u, v ∈ Zn: u ∧ v ∈ Zn, (u ∧ v)i = min(ui, vi)

• for u, v ∈ Zn: u ∨ v ∈ Zn, (u ∨ v)i = max(ui, vi)

• for v ∈ Zn: pv = xv
+ − xv−

• matdn(A) the set of matrices with entries in A with d rows and n columns
• conv(U) = {a1u1 + . . . + atut|t ∈ N, 0 ≤ aj ∈ R, uj ∈ U, a1 + . . . + at =

1 for all j} for U ⊂ Rn

Algorithms are written with C-style control statements like �for�, �if� and �while�.
�{� and �}� are used for grouping statements together allowing them to act as a
single (sub)statement in a control statement. � :=� is used for assignments.

73

C A tiny user manual

The program is available at http://www.daimi.au.dk/∼u950710/speciale.html. It
should compile on any UNIX/LINUX platform. The program is compiled using
make. This results in two executable �les. The �rst one (main) lets you select
one of ten computation methods. Six methods for computing a single reduced
Gröbner basis and four methods for computing all reduced Gröbner basis for a
toric ideal. The methods are the one described in section 8.2 and in section 8.3.

After having selected the computation method you are asked if the program
should LATEX its output. Finally, you tell the program what the matrix A should
be. If you want to use a random matrix you type in its dimension: number of
rows, number of columns and a maximum for the nonnegative random entries
(+1). In some cases this will give an ideal not homogeneous with respect to a
positive vector and the behaviour of the program is unde�ned. If you want to
specify a matrix you type in a 0 followed by the entries given in the format:
{(1,1)(1,2)(1,3)} corresponding to the matrix HA3 in section 8.1.

After this the program starts computing. When �nished the results can be
read from the �le ud.tex and ud.dvi if LATEX is available. The �nal list of
reduced Gröbner bases and how they are connected in the graph can only be
printed if the exhaustive search method was chosen. The printing of the list is
very slow even on medium sized examples.

The second executable �le is used for generating tables containing running
times and for printing the various test matrices. Right now running this program
will take several hours. The output is written to tableA.tex, tableB.tex and
tableC.tex.

74

References

[Bigitta,..] Anna Maria Bigatti, Robertola Scala, Lorenzo Robbiano, �Computing Toric
Ideals,� J. Symbolic Computation, 27, (1999): 351�365.

[Cohen] Henri Cohen, �A Course in Computational Algebraic Number Theory,�
(Springer-Verlag, 1993): 78�100.

[Cox, Little and O'Shea] Cox, Little and O'Shea, �Ideals, Varieties and Algorithms,�
(Springer Verlag, 1992): 47�111.

[Grünbaum] Branko Grünbaum, �Convex polytopes,� (Interscience publishers, 1967).

[Hosten,..] Serkan Hosten and Bernd Sturmfels, �GRIN: An implementation of Gröb-
ner Bases for Integer Programming,� in Integer Programming and Combinatorial

Optimization, (Springer Lecture Notes in Computer Science, 920, 1995): 267�276.

[Huber,..] Birkett Huber and Rekha R. Thomas, �Computing Gröbner Fans of Toric
Ideals,� Experimental Mathematics, Vol. 9 (2000), No. 3 : 321�331.

[Lauritzen] Niels Lauritzen, �Algebra 1,� Course Notes (Department of Mathematical
Sciences, University of Aarhus, Denmark, 2000).

[Lenstra,..] A. K. Lenstra, H. W. Lenstra, L. Lovász, �Factoring Polynomials with Ra-
tional Coe�cients,� Mathematische Annalen (Springer Verlag, 1982): 515�534.

[Papadimitriou] Christos H. Papadimitriou, �Combinatorial Optimization: Algorithms
and Complexity,� (Prentice Hall, 1982).

[Papadimitriou 1994] Christos H. Papadimitriou, �Computational Complexity,� (Addi-
son Wesley, 1994).

[Sturmfels] B. Sturmfels, �Gröbner Bases and Convex Polytopes,� (American Mathe-
matical Society, University Lectures, 1996).

75

