CaTS version 2.2: A User’s Manual

Anders Nedergaard Jensen

28th November 2003

Abstract

CaTs is a software package whose main functions enumerate (1) all re-
duced Grobner bases of a lattice ideal, and (2) all monomial A-graded ideals
that are flip-connected to a given one. Several variants of these enumera-
tion algorithms are supported such as restricting the above enumerations
to all initial ideals or monomial A-graded ideals with a fixed radical. CaTS
supports several additional commands among which the highlights are:

e cats_interactive which allows interactive walks on the edge graph of
the state polytope of a toric ideal,

e cats_fiber which enumerates all monomials of a fixed A-degree, and

e cats_monomialideal2standardpairs which computes the standard pair
decomposition of a monomial ideal.

The full list of commands can be found in appendix A.

CaTS began as a re-implementation of TiIGERS, a software package to
compute state polytopes of toric ideals, written by Birkett Huber based
on algorithms in [Huber & Thomas|. The first version was developed for
Jensen’s Masters thesis at the University of Aarhus in Denmark. The pro-
gram has been expanded since then. CaTS is faster than TiGERS (by a
factor of 30 on some examples [Jensen|) and has several additional function-
alities. To access the full range of commands, CaT$S needs to be linked to
the packages TOPCOM [Rambau], 4ti2 [Hemmecke & Hemmecke]|, Normaliz
[Bruns & Koch|, Macaulay 2 [Grayson & Stillman|, SoPlex [Wunderling|
and cdd [Fukuda]. The last two packages are used to solve linear programs
and have considerably increased the numerical stability of CaTS. The basic
installation only requires linking to the LP solvers.
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1 Introduction

CaTS is a computer program for enumerating all reduced Grobner bases, or
equivalently, all monomial initial ideals of a lattice ideal in k|xq, ..., x,] =: k[X]
where k is a field with char(k) # 2. The lattice ideal of a sublattice £ C 7", is

I;=x" —x" :u=u"—u €L ut,u eN") Cklx].

The ideal I, is toric when L is a saturated lattice. See [Sturmfels| for the theory
and applications of toric ideals.

The reduced Grobner bases of a polynomial ideal I are in bijection with the
vertices of the state polyhedron of I. When [ is homogeneous, this polyhedron is
bounded and known as the state polytope of I |[Bayer & Morrison|. The normal
fan of the state polyhedron is the Grébner fan of I [Mora & Robbiano|. The
main algorithm in CaTS traverses the edge graph of the state polyhedron of a
lattice ideal and outputs the reduced Grobner bases corresponding to the vertices
of the graph. See Chapters 1-3 in [Sturmfels| for the theory and computation of
state polytopes and Grobner fans of general polynomial ideals. When the ideals
have more structure as in the case of lattice ideals, the general algorithms can be
specialized. Ca'T'S is based on such specialized algorithms that were developed for
toric ideals in [Huber & Thomas| and first implemented in the software package
TiGERS [Huber| written by Birkett Huber. With minor modifications the same
algorithms work for all lattice ideals. The basic strategy of these algorithms is to
enumerate all reduced Grébner bases of the ideal by walking on the edge graph
of the state polyhedron and visiting every vertex during the walk.

Walking from one vertex of the state polyhedron to a neighboring vertex along
an edge of the polyhedron is the same as walking from one maximal Grébner
cone through a facet into the neighboring maximal Grébner cone. Thus at any
given vertex of the state polytope we need algorithms for the following local
computations:

1. A method for finding the facets of the Grobner cone of a given reduced
Grobner basis.

2. A method for computing a neighbouring reduced Grobner basis given one
Grdébner basis and a facet of its Grobner cone.

Globally, we use a graph search algorithm to enumerate all the vertices of the
(edge graph of the) state polyhedron. The main features of the specialized algo-
rithms for 1. and 2. are:

e All polynomials in the input, output and intermediate computations are
binomials or monomials with +1 or 0 as coefficients.

e Monomials and binomials can be represented by vectors.
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e The local change procedure to convert one Grobner basis to another is
combinatorial and does not need to know weight vectors that induce either
Grobner bases. This avoids numerical issues that arise with computing and
storing weight vectors.

e The facets of a Grobner cone are computed from the elements of the Grob-
ner basis via linear programming. CaTS can be linked to the linear pro-
gramming solvers SoPlex [Wunderling|, cddlib [Fukuda| or Huber’s imple-
mentation of the simplex algorithm from TiGERS [Huber| (included in this
package). With cddlib exact arithmetic is possible.

Example 1.1 Let A = [1 2 3 6] € Z** and let < be the graded reverse lexi-
cographic order with the grading (1,2,3,6)” and with a = b% = ¢ = d. There
are 12 reduced Grébner bases for 14 C kla, b, ¢, d|, numbered G, to G;; and listed
below. G; is the reduced Grébner basis corresponding to <.

Go={||b—a® ||o,| c—a> |10,| d—a® |11 }

gl: C_2—d 77a_b_CJ Q—CLC 4, _2_bb2}

Q

Go={|A—d|1w,| a—c|u, | b—a|1}

g3:{ E_CQ 8,a_b—C,CL_2—b, ac—ﬁ 7 d—C2 57}

g4:{E_d7 &_ad 570_2_d767a_2_b7 CLC—E 1}

g5: b3_d 8 C2_d 3,(I_b—C,CL_2—b,(IC—E, ad_& 4a}

Ge={|®>—d|o,| a®>—b|11,|| c—ab |4}

Gr={ab—c | B2 —ac|s|a®=0b ||| d=c |1}

g8:{97a_2_b7ac_gy 62_6 3 d_ﬁ 5}
g9:{ a_2_b 0, C—a_b 8 d_E 6}

Go={|a—c|o||b—d®||7|d-—C |2}

Gu={|a"—d o, || b—0a?® |6, | c—a® |2}

This ideal has a three dimensional state polytope and hence its edge graph
is planar (see Figure 1.1). The boxed binomials in a reduced Grébner basis,
give the facets of the corresponding Grobner cone. The number that appears to
the bottom right of a facet binomial (outside the box) indexes the Grobner cone
that shares this facet with the current Grébner cone. The double boxes will be
explained later.



Figure 1: The edge graph of the state polytope from Example 1.1

1.1 Algorithms

The following is a brief description of some of the algorithms in CaTS. Details
can be found in [Huber & Thomas]|,[Jensen| and [Sturmfels, Chapter 3|. We list
the option that needs to be added to the basic command in CaTS to invoke the
stand alone algorithms in this list.

1.1.1 Finding the facets of a Grobner cone

Given a reduced Grobner basis G(I) of I with respect to a term order <
we need to find the facets of its Grobner cone which is the closure of the set
{fweR: G(I) =GN} ={weR": a-w>pF wlralx*—x’ ¢
G- (I) with leading term x*}. This follows from Proposition 2.3 [Sturmfels| which
states that:

ing(I) =in(I) & forallx* —x" € G (I):a-w> B w.

Thus each binomial in G_(I) gives rise to one valid inequality of the cone.
Some of these equalities are essential (i.e., correspond to facets of the Grobner
cone). If an inequality is essential we call its binomial a facet binomial. By the
Farkas lemma of linear programming, the facet normals of the Grobner cone are
exactly the primitive generators of the extreme rays of the cone polar to the Grob-
ner cone. This polar cone is generated by {a — 3 : x* —x” € G,(I)}. CaTS uses
linear programming to find these generators by using Huber’s implementation of
the simplex method in TiGERS or cddlib [Fukuda] or SoPlex [Wunderling|. In
Example 1.1, G; has three facet binomials: ¢ — d, b*> — ac, a® — b; ab — c is not a
facet binomial.

To improve speed, two extra tests called the “superset test” and the “subset
test” are used when finding facets [Huber & Thomas|. The subset test simply
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tests if the ith coordinate is positive only for a single vector in the list {a — (3 :
x® —x”? € G,(I)}. If so, this vector must be an extreme ray of the polar cone.

1.1.2 Flip - the local procedure to change Grébner bases

Suppose that a reduced Grébner basis G- (I) has the facet binomial x* — x/. If
the Grobner fan is complete there is another Grébner basis G-/ (1) whose Grobner
cone shares this facet. We wish to compute G/ (I).

Let w be a vector in the relative interior of the common facet and <, be
the term order that refines the order induced by w by <. Then in. (I) =
in<(ing,(I)) = in<(I) is the initial ideal of in, (/) with respect to <. The ideal
in,(I) has precisely two initial ideals: in([) and in-/(I). The flip algorithm
in [Huber & Thomas| allows us to compute the ideals in,(I) and in_.(I) given
G<(I) without actually computing w or knowing < and <’. It is a special case
of Subroutine 3.7 in [Sturmfels|. The procedure is purely combinatorial. Finally,
the algorithm “lifts” in_,(I) to the Grébner basis G/(I). In Example 1.1 flipping
across the facet binomial ¢ — d in G; we get Gr.

1.1.3 Graph search algorithms: Exhaustive search (option -t1, -t3)

Enumerating the graph is easy now that we know how to find edges and compute
neighbouring vertices. We simply apply an exhaustive enumeration algorithm for
graphs. One improvement is directing the edge graph with respect to a generic
vector w € R™ or a term order. Since the graph is the edge graph of a polytope
we get a unique sink in this new directed graph and no cycles. Starting at the
sink and always moving in the opposite direction on the edges we can enumerate
the graph. Having ordered the graph in this way we only need to do half as many
“flips” as before — usually we would have flipped twice for each edge in the graph,
but now we flip only once. See the figure in Example 1.2; G; is the unique sink
here.

1.1.4 Graph search algorithms: Reverse search (option -t2)

When using exhaustive search, we need to store all computed vertices in memory
and each time we compute a new vertex we must check if it has already been
computed. We want to avoid storing the set of computed vertices as the output
size can be enormous. This can be done via the memory-free reverse search
technique in [Avis & Fukuda]. We remove edges from the oriented graph in the
previous section until we are left with a tree. See Example 1.2. For each vertex we
need exactly one outgoing edge except for the sink. To remove edges we choose
a rule. For example we could choose an outgoing edge in the oriented graph to
be kept exactly if the initial term of the corresponding binomial is maximal with
respect to the lexicographic order among all outgoing edges from that vertex.
Checking if an edge in the oriented graph is a part of the tree can be done locally.
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Figure 2: Oriented graph Figure 3: Oriented tree

We now apply a tree traversal algorithm and we no longer have to store the set
of computed vertices. One way to think of the tree induced by w, is as the union
of the paths we walk along when when computing G, (1) via the Grébner walk
procedure |Sturmfels| starting at any reduced Grébner basis.

Example 1.2 (Example 1.1 continued.) Recall that in the list of reduced Grob-
ner bases, the facet binomials are boxed and subscripted by the index of the
neighboring Grobner basis that shares this facet.

Each binomial has an underlined term. This term is initial with respect to
our graded reverse lexicographic term order <. Each edge in the graph is labeled
by the facet binomial corresponding to that edge. The edges are oriented with
respect to < and G- (I) becomes the unique sink.

We now delete edges to get the tree. The remaining edges correspond to the
binomials in Example 1.1 marked with a double box. For each reduced Grébner
basis this is the facet binomial (among facet binomials corresponding to outgoing
edges) with the largest initial term with respect to the lexicographic term order.

1.1.5 Monomial initial ideals with a fixed radical (option -t5)

Usually CaTS computes all monomial initial ideals of a lattice ideal. However,
CaTsS could compute just those monomial initial ideals with a prespecified radical
if needed. The option -t5 in CaTS allows this computation. A reduced Grobner
basis whose initial ideal has the specified radical is needed as input. The set of
monomial initial ideals of I with this radical is connected in the edge graph of the
state polytope. Hence all CaTS needs to do is to exhaustively search this part of
the graph, and for each edge, check if it leads to an initial ideal with the same



or a different radical. Fixing the radical is extremely important when combining
CaTS with TOPCOM. See section 4.4.

It is possible to improve this algorithm using reverse search on the subgraph.
However, this requires computing the term order for one of the monomial initial
ideals with this radical. CaTS does not have this option at the moment.

1.1.6 Computing monomial A-graded ideals (options -t7,-t8)

An A-graded ideal is an ideal with the same A-graded Hilbert function as /4,
the toric ideal defined by A [Sturmfels, Chapter 10]. All initial ideals of 4 are
A-graded, but in general there may be many more monomial A-graded ideals of
I4. One way of computing more monomial A-graded ideals is by allowing flips
through binomials that are not facet binomials. There are restrictions on which
binomials are flippable in this new sense — only those that pass the superset
test are eligible (see section 1.1.1 and [Maclagan & Thomas]|). The flip algorithm
behaves nicely on these flips except that the “lifting” procedure from Section 1.1.2
may fail when we allow these generalized flips. The lifting algorithm was used
before to lift an initial ideal to its Grobner basis which was needed to continue
the graph search. In this new setup, we need to lift a monomial A-graded ideal to
a “fake Grobner basis” which is a list of binomials such that for each binomial, the
positive term is a minimal generator of the monomial A-graded ideal and negative
term is the unique standard monomial of the same A-degree. CaTS has two ways
of solving this. The first is to compute the unique standard monomial of a given
A-degree by searching the set of all monomials of that A-degree. This amounts
to searching the lattice points in a polytope. CaTS can compute lattice points
in polytopes using the command cats_fiber. See Section 5 for details. The
second method is to use 4ti2 [Hemmecke & Hemmecke| to compute the Graver
basis of 14 and then pick the right binomial to include in the fake Grobner basis
from the Graver basis. CaTS can compute all monomial A-graded ideals that are
connected by flips to the monomial initial ideals of 14, using exhaustive search.
There are examples for which all monomial A-graded ideals are not connected by
flips [Santos|. Hence CaTS may not find all monomial A-graded ideals.

1.1.7 Other algorithms

A few other algorithms are also implemented in CaTS.

e Observing that reduced Grébner bases of lattice ideals are generated by
pure binomials we represent the binomials as vectors. Lattice ideals allow
cancellation: x“x¥ — x’x¥ € I = x® — x? € I. These two observations
lead us to the saturating Buchberger and the saturating division algorithms
implemented in CaTS. They work on vectors alone and cancel out common
terms when possible. We expect these algorithms to be faster than the



original ones. See [Jensen| for details on these algorithms and why they
can be used.

e Algorithm 12.3 in [Sturmfels| for computing a first Grébner basis of a toric
ideal I, given the matrix A, is implemented in CaTS.

e The Lenstra-Lenstra-Lovasz algorithm for computing reduced lattice bases
is needed in [Sturmfels, Algorithms 12.3] and is also implemented in CaTS.

e An algorithm for computing the standard pairs [Sturmfels, Trung & Vogel|
of a monomial ideal is implemented. This algorithm differs from published
algorithms for this computation. The monomial ideal {0} C k[z1, ..., x,]
has only a single standard pair. The algorithm works by successively adding
a monomial generator to the ideal and updating the set of standard pairs
accordingly.

2 Installation

This section describes how to install CaTS on a Linux / Unix system with a
modern version of gcc. CaTS has been compiled successfully with gce version
3.2.
Download the file cats2.2.tar.gz from the CaTS homepage located at:
http://www.soopadoopa.dk/anders/cats/cats.html.

2.1 Basic installation

Decompress cats2.2.tar.gz by typing

gzip -d cats2.2.tar.gz

in the shell. This produces a .tar file which is extracted using

tar -x<cats2.2.tar

This creates a new directory named cats2.2.tar . Go to this directory by typing
cd cats2.2

You can now compile CaTS by typing

make

This produces the executable file cats. Type ./cats -h in the shell to test it. It
is recommended that you continue reading — the following section will give you
more information on how to install the program including instructions on how to
add a reliable LP-solver.



2.2 Installation to invoke advanced features

Having compiled the program using the instructions above, you can now install
cats in /usr/local/bin by typing

make install

This will make cats accessible from any directory. You must be root to run make
install.

The version compiled in the description above uses the simplex implementa-
tion in TiGERS. Due to floating point precision problems it is highly recom-
mended that you download and install SoPlex or cddlib see [Wunderling]|
and [Fukuda| which contain standard LP solvers. There are examples for which
TiGERS runs into numerical problems arising from its in-built LP solver.

2.2.1 SoPlex

To compile CaTS with SoPlex you should install SoPlex version 1.2.1 down-
loadable at http://www.zib.de/Optimization/Software/Soplex/soplex.php.
Follow the instructions given. Or extract the SoPlex .tar file into some directory,
go to the newly created directory and type

make COMP=gnu OPT=opt

This will work in most cases. If not follow the instructions given with SoPlex.

When SoPlex is installed go to the directory cats2.2 where you extracted
CaTS. In this directory make a symbolic link to the directory where you installed
SoPlex by typing

1n -s /this/is/the/path/to/soplex-1.2.1 soplex-1.2.1

You are now ready to compile CaTS with SoPlex. Do this by typing

make soplex=enabled

If you want the new re-compiled CaTS to be installed in /usr/local/bin you
should type

make install

again. To test, type ./cats -h. CaTS should show its help file and a list of LP
solvers linked to the program.

2.2.2 Cddlib

Cddlib has the advantage that it can do exact arithmetics. For CaTS to use
it you must be root when installing cddlib on your system (when running make
install). Download the file cdd1ib-093b.tar.gz from

http://wuw.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
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into a directory. Decompress the file using gzip -d cddlib-093b.tar.gz and
extract the tar archive using tar -xvf cdd1lib-093b.tar. Change directory
to the newly created directory cddlib-093b and run ./configure , make and
make install. You must be root to execute the last command. Return to the
directory CaTS was extracted to and run make cdd=enabled. This option can
also be combined with soplex=enabled.

2.3 Additional applications

The CaTS package contains several specialized applications. They are compiled
by moving to the sub directory apps and running make:

cd apps
make

The options from the previous sections (soplex=enabled and cdd=enabled) can
also be used here. To install the applications in /usr/local/bin type:

make install

You must be root to do this. The names of all the CaTS applications start with
cats_. If you installed the files in /usr/local/bin, then type cats<TAB> in your
shell to list the installed CaTS applications.

2.4 Invoked programs

If the enumeration of monomial A-graded ideals is done using option -g1 which
needs the Graver basis, CaTS requires 4ti2 [Hemmecke & Hemmecke| to be in-
stalled on the system. The command graver from 4ti2 must be in the path.
The same is true for option -L. It is very important to use 4ti2 version 1.1 and
not version 1.0.

Some of the additional application programs also depend on other programs.
The programs needed are Normaliz [Bruns & Koch|, TOPCOM [Rambau| and Macaulay 2
|Grayson & Stillman|. The executable files normaliz, points2triangs and M2
must be in the path for these applications to work correctly.

When CaTS communicates with these programs it will use files in the cur-
rent directory. They are called something like normalizdata.in. Hence it is
important not to start simultaneous copies of CaTS invoked from the same direc-
tory. This is only a problem when using CaTS in a way that makes use of these
programs.

The complete list of functionalities available in CaTS and the
programs they need are listed at the end of the manual.
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3 The main functions

The main CaTS program called cats computes the Grobner fan of a lattice ideal
and writes the output to a file. Example:

./cats -pl+

followed by

{1 2)(3)}

writes all reduced Grébner basis of the toric ideal 14 to the file output_list
where A= (1 2 3).

3.1 Options

The following is the complete list of options in CaT$S (* is the default setting):
Traversal algorithm:

-t1

-t3
-tb
-t7
-t8

Exhaustive Search

-t2 *Reverse Search

Oriented Exhaustive Search

Exhaustive Search, for initial ideals with a fixed radical
Exhaustive Search to find A-graded monomial ideals
A-Graded fixed radical exhaustive search

Linear programming library:

-fsop
-fcdd
-fcdd
-fhub

lex

gmp
er

SoPlex

cddlib

cddlib with gmp for exact arithmetics
Huber’s implementation of the simplex method

Vertex printing:

_pO
_p]_
_p1+
_p2
_p2+
-gs

No vertex printing

Print
Print
Print
Print
Split

facet binomials and reduced Groebner bases when found

reduced Groebner bases when found (minimalistic version)

facet binomials and initial ideals when found

initial ideals when found (minimalistic version)

printing, print radical by radical, together with -p2+ and -w only

Output file name options:

-or FILENAME file for the results (time, size of graph,

floating point status ....) Default: output_results

-0l FILENAME file for listing the graph during traversal

(see options -pl, -p2 and -p3) Default: output_list
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Input file name options:

-i FILENAME input file
-w FILENAME weight file, containing weight vectors for each radical
(regular triangulation)

Lattice ideal options:

-L The ideal considered should be the lattice ideal of the lattice
generated by the rows of the input matrix rather than the toric
ideal of the input matrix

Performance options:

-T Print internal timers when done
Help:

-h Print the help file

Options -t1, -t2, -t3, -t5 -t7 and -t8 are mentioned in Section 1.1. The
options -t7 and -t8 are further explained in section 4.2. Option -w is explained
in section 4.4. The examples in Section 4 illustrate the use of many of these
options.

3.2 Input formats

When the program is started with ./cats -pi+ it will ask for input from the
keyboard. The input specifies a lattice ideal for which the Grobner fan should
be computed. The input can either be a matrix or a reduced Grébner basis. If
the input is a matrix, the Grobner fan of the associated toric ideal is computed.
If the input is a reduced Grobner basis, it is used to initiate the computation of
the Grobner fan of the ideal it generates.

For compatibility, three input formats are supported. The toric ideal associ-
ated to the 3x6 matrix:

A:

o O N

1
1
0

S NN O

10
01
11

N OO

can be given to the program in the following three ways:
{(2,0,0)(1,1,0)(0,2,0)(1,0,1)(0,1,1)(0,0,2) }

(The brackets may be of any type and columns may be separated by ’)’) or
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{36 :
210100
012010
000112
}

or

R:6

G:{e"2-cf, de-bxf, c*d~2-b~2%f, b*e-cxd, axf-d~2, axe-bxd, axc-b~2}

Here R stands for ring and G for Grébner basis. The number after R is the
number of variables in the polynomial ring. This version of CaTS cannot handle
more than 52 variables. The variables are named a, b, ..., z, A, B, ...,Z.

If you store your matrix / Grobner basis in a file called example.dat you can
make Ca'TS read it directly by typing:

./cats -pl+ <example.dat

The output is written to output_list.

3.3 Printing formats

CaT§S supports several output formats. Which output format to use is selected
with the -p option. In the following the options are demonstrated on the example
A= ( 1 2 3 ):

e -pl (facet binomials and reduced Grébner bases)

Vtx: 0 (2 facets/3 binomials/degree 2)
{# b~2-axc, # a~2-b}

{b~2-a*c, a*b-c, a~2-b}

Vtx: 1 (2 facets/4 binomials/degree 3)
{# b°3-c"2, # a*c-b~2}

{a~2-b, a*b-c, b~3-c"2, a*c-b~2}

Vtx: 2 (2 facets/4 binomials/degree 2)
{# axb-c, # c~2-b~3}

{a~2-b, a¥b-c, a¥c-b~2, c~2-b~3}

Vtx: 3 (2 facets/2 binomials/degree 2)
{# a~2-b, # c-a¥b}

{a*2-b, c-a*b}

Vtx: 4 (2 facets/2 binomials/degree 1)
{# b-a*2, # c-a*3}

{b-a*2, c-a*3}

Vtx: 5 (2 facets/2 binomials/degree 3)
{# a"3-c, # b-a"2}

{a~3-c, b-a~2}

e -pi+ (the list of reduced Grébner bases)

{{b~2-a*c, a¥b-c, a~2-b},

{a*2-b, a*b-c, b~3-c*2, a*c-b~2},
{a*2-b, a*b-c, a¥c-b~2, c~2-b=3},
{a*2-b, c-a*b},

{b-a~2, c-a"3},

{a*3-c, b-a*2}}
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e -p2 (facet binomials and initial ideals)

Vtx: 0 (2 facets/3 binomials/degree 2)
Initial ideal:{b~2, a*b, a~2}
Facet Binomials:{# b~2-a%c,# a"~2-b}
Vtx: 1 (2 facets/4 binomials/degree 3)
Initial ideal:{a"2, a*b, b~3, a*cl}
Facet Binomials:{# b~3-c~2,# a*c-b~2}
Vtx: 2 (2 facets/4 binomials/degree 2)
Initial ideal:{a"2, a*b, axc, c2}
Facet Binomials:{# axb-c,# c~2-b~3}
Vtx: 3 (2 facets/2 binomials/degree 2)
Initial ideal:{a~2, c}
Facet Binomials:{# a*2-b,# c-a*b}
Vtx: 4 (2 facets/2 binomials/degree 1)
Initial ideal:{b, c}
Facet Binomials:{# b-a*2,# c-a"3}
Vtx: 5 (2 facets/2 binomials/degree 3)
Initial ideal:{a"3, b}
Facet Binomials:{# a“3-c,# b-a~2}

e -p2+ (list of initial ideals)

{{b~2, a*b, a"2},
{a~2, a%b, b3, a*c},
{a~2, a*b, axc, c~2},
{a~2, c},

{b, <},

{a"3, b}}

3.4 Files

It is possible to change the output files in CaTS using the options -or and -ol.
If these options are not used, the default output files are output_results and
output_list. Cal'S lists these filenames when starting up.

By default, CaTS gets its input from the standard input (keyboard). It is
possible to read the input from a file using the < of the shell like this ./cats
< inputfile. However, it is sometimes more useful to use the -i option. If in
addition you add the option -e, then CaTS will use the name of the input file
as the prefix of all output files. This is useful if you have a large collection of
examples. For example, if the input file is named V_2_4.dat and the example is
input via the command:

./cats -pl -e -i V_2_4.dat
then the files get named V_2_4.1lists, V_2_4.results, and V_2_4.heights.
The .heights file is explained in Section 4.4.

4 Examples

4.1 Simple examples

We will explain how to use CaTS for computations with toric ideals that are
homogeneous with respect to a positive vector. Let

A:

S O N

1
1
0

oo
[ R
—_ _ o
)
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. To count the number of monomial initial ideals of the toric ideal I, type
./cats

When asked for input type
{(2,0,0)(1,1,0)(0,2,0)(1,0,1)(0,1,1)(0,0,2)}

The program will write the number of vertices and edges of the state poly-
tope to the file output_results.

. If we want to use exhaustive search for the above computation we should
have started the program with:

./cats -t1

. If we want to produce a list of the initial ideals we should have started the
program with:

./cats -p2+

The list will be written to the file output_list.

. If we get tired of retyping the matrix every time we run the program, we
can write it to the file example.dat and start CaTS using

./cats < example.dat
or
./cats -i example.dat

. It is possible to give CaTS a reduced Grobner basis of the toric ideal instead
of the matrix defining the ideal: type

./cats
followed by

R:6
G:{e"2-c*f, dxe-bxf, d~2-axf, cxd-bxe, bxd-axe, b~2-axc}

or write the above lines to a file and use the -i option.
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6. To compute all monomial initial ideals with the same radical as the initial
ideal corresponding to the input Grobner basis type

./cats -tb5 -p2+
followed by

R:6
G:{e~2-cxf, dxe-bxf, d~2-axf, cxd-bke, bxd-axe, b~2-axc}

4.2 Monomial A-graded ideals
Let A = ( 1 23789 ) in the all the following examples.

1. To compute all monomial A-graded ideals flip-connected to the initial ideals
of 1, type:

./cats -t7

Type {(1),(2),(3),(7),(8),(9)} when asked for input. If you wanted
the ideals written to the file output_list you should have used:

./cats -t7 -p1

2. To compute all monomial A-graded ideals flip-connected to a given mono-
mial A-graded ideal using fiber search for lifting to “fake Grobner bases”

type:
./cats -t7 -A

Type {(1),(2),(3),(7),(8),(9)} when asked for input. When asked for
more input type

{e~8-axf~7, dxe~6-axf~6, d~2*%e~4-axf~5, d~4-axf~3,
d~3*xe-b*f~3, c¢c~3-f, b*xd-f, cxd-a*xf, a*e-f, bxe-axf,
cxe-b*xf, b*c~2-e, a*d-e, a*c~2-d, a*b-c, b~2-axc,
a~2-b, d*f-e~2, c"2xf-d*e, bxc*f-d~2, c*xf~2-d~3,
b*f~4-d~2*e~3}

This last input is a “fake Grobner basis”. The positive terms generate a
monomial A-graded ideal and for each binomial, the second term is ex-
actly the standard monomial of the ideal with the same multi-degree as the
positive term. This is not necessarily a Grébner basis.
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3. The same as above but using the Graver basis from 4ti2 for lifting
./cats -t7 -A -gl

If you are having trouble using the -g1 option this could be because you
don’t have the right version of 4ti2 installed on your system. Try to do
the computation without -g1 which is very slow or install 4ti2 version 1.1.

4. Same as 2. but reading the matrix and the Grobner basis from a file named
inputMatrix.dat:

./cats -t7 -A <inputMatrix.dat
or

./cats -t7 -A -i inputMatrix.dat
The file inputMatrix.dat should look like this:

{(1),(2),03),(7),(8),(9D}

{e~8-axf~7, d*e~6-a*xf~6, d~2xe~4-axf~5, d~4-a*f"3,
d~3xe-b*f~3, c¢c~3-f, bxd-f, cxd-axf, a*e-f, bxe-axf,
cxe-b*xf, b*c~2-e, a*d-e, a*c~2-d, a*b-c, b~2-axc,
a~2-b, dxf-e~2, c~2xf-dxe, bxcxf-d~2, cxf~2-d~3,
bxf~4-d~2*xe~3}

5. Fixed radical: Compute all monomial A-graded ideals flip-connected to a
given A-graded monomial ideal with the property that their radical is the
same as the radical of the given A-graded ideal. Type:

./cats -t8 -A

Type {(1),(2),(3),(7),(8),(9)} when asked for input. When asked for
more input type

(e~6-cxf~5, dxf-e~2, d*e~4-cxf~4, d~2%e~2-c*xf~3,
d~3-c*f~2, c*e~3-f~3, c*d-b*e, c~2-b~3, bxf-cxe, bxe~2-f"~2,
bxd-f, b~2xe-c*f, b~2%c-d, b~4-e, axf-b*e, axe-f, axd-e,
a*xc-b~2, axb-c, a~2-b)

The positive terms generate an A-graded ideal and for each binomial the
second term is exactly the standard monomial of the ideal with the same
multi-degree as the initial term. This is not necessarily a Grobner basis.
All monomial A-graded ideals that are flip-connected to this monomial A-
graded ideal and has the same radical will be enumerated. The computed
monomial initial ideals are written to output_list.
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4.3 Lattice ideal examples

The lattice ideals seen so far are all toric ideals homogeneous with respect to a
positive grading. CaTS can also do computations on general lattice ideals. We
look at the lattice ideal I = (a® — b,c® — b%,b*c — a,abc — 1,b* — ac?, ab® — c?)
associated to the lattice generated by {(2, —1,0)7, (0,-2,3)T, (1,-2,—1)T}.

1. To compute all monomial initial ideals of I type
./cats -p2+
followed by

R:3
G:{a~2-b,c"3-b~2,b"2c-a,abc-1,b"4-ac~2,ab~3-c~2}

or
./cats -p2+ -L

followed by
((2,0,1)(-1,-2,-2)(0,3,-1))

The rows of the input matrix are the lattice generators. Since CaTS reads
a matrix column by column we must "transpose" the lattice genrators by
hand before giving them to CaTS. The ideal has 13 monomial initial ideals.

If you are having trouble using the -L option this could be because you don’t
have the right version of 4ti2 installed on your system. It is recommended
that you either install 4ti2 version 1.1 or give the Grobner basis as input
without the -L option.

4.4 Fixed radical computations and TOPCOM

The package TOPCOM [Rambau| can be used for computing the regular trian-
gulations of a point configuration. For a matrix A the radicals of the monomial
initial ideals of 14 are in bijection with the regular triangulations of the columns
of A. CaTS can compute all initial ideals of 4 with a fixed radical with option
-t5 given just one reduced Grébner basis whose initial ideal has this radical, as
input.

Using the output from TOPCOM, we could use CaTS to find initial ideals
radical by radical. TOPCOM can output regular triangulations upto symme-
try. If this is used as input to CaTS, we get initial ideals under these symmetry
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classes of triangulations. This can tremendously cut down the amount of compu-
tations needed. CaTS can do these computation automatically using the output
from TOPCOM. Use TOPCOM to compute the triangulations of A with the
command "points2triangs —heights". For each symmetry class of triangulations,
CaTS needs:

e a weight vector inducing the regular triangulation

e the number of triangulations in the class

The weight vector is needed to produce a Grobner basis whose initial ideal has
radical corresponding to the regular triangulation. The number of triangulations
is just used for counting the total number of monomial initial ideals. Example:

points2triangs --heights <examples/V_2_4.dat >examples/V_2_4.heights
./cats -w -i examples/V_2_4.dat -p2+ -gqs -e

This produces the file examples/V_2_4.1list containing the initial ideals radical
by radical. Only one radical from each symmetry class is used. The last part
of the example file V_2_4.dat contains symmetries. CaTS will ignore this part.
See [Rambau]| for details on how to specify symmetries. Note that CaTS often
computes initial ideals under the same radical that are symmetric. So the output
from CaTS is not exactly an "enumeration of initial ideals up to symmetry", but
the point is to restrict to one representative from each symmetry class at the level
of radicals or regular triangulations.

5 Additional functions

This section briefly describes the additional applications included in the CaT$S
software package. Some of these applications contains a help file. To view this
you should use option -h. Example:

./cats_interactive -h

5.1 The interactive mode

The program cats_interactive makes it possible to walk in the Grobner fan
interactively. You start the program with

./cats_interactive

Now type in a matrix/point configuration. Example: ((1)(2)(3)(4)). The
program computes a reduced Grobner basis with respect to reverse lexicographic
order with a > b > c > d > ... where a,b, c,d are the variables of the toric ideal.

The program will print this reduced Grobner basis, the radical of its initial
ideal, the standard pairs of its initial ideal and the facets of the Grobner cone.
You now have a few options:
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e Type a number <enter> to flip the facet binomial indexed by that number.
e Type 'c’ <enter> to test for Cohen Macaulayness of the initial ideal.
e Type 'b’ <enter> to take a step back in the path.

The program is useful when looking for initial ideals without embedded primes —
we want to flip a facet binomial leading to an initial ideal with fewer standard pairs
as we expect this initial ideal to be closer to an initial ideal without embedded
primes (there is no theorem to this effect, just an empirical observation). To easily
find such a facet, the facets have been marked with the number of standard pairs
for the ideal they flip to. Also the number of standard pairs for the current initial
ideal, the facet we came from and whether a facet binomial flips to a different
radical /triangulation is shown.

5.2 Enumerating lattice points in polytopes

The program cats_fiber can enumerate the fiber of the map
¢ :N"—=Z . u— Au

for reasonably small examples. The input is a matrix of the form described in
section 3.2 followed by a vector in the fiber. Example:

./cats_fiber
with input:

{(3)(4) (5)}
(0,0,3)

gives output:

{
(0,0,3),
(2,1,1),
(1,3,0),
(5,0,0)
}

Thus ¢~(15) = {(0,0,3),(2,1,1),(1,3,0),(5,0,0)} when A = (345) — in other
words, there are four ways of writing 15 as a sum of numbers from the set {3,4,5}:
15=5+5+5=34+34+4+5=3+4+44+4=3+3+3+3+3.
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5.3 VectorList2MonomialList

The program cats_vectorlist2monomiallist takes a list of vectors and trans-
forms it into a list of monomials. It is usually used in combination with cats_fiber.
Example:

./cats_fiber | ./cats_vectorlist2monomiallist
with input:

{(3)(4) (5)}
(0,0,3)

gives output:

(c=3,
a~2xbxc,
a*b~3,
a~b

)

5.4 IsDeltaNormal

The program cats_isdeltanormal can check if a point configuration has a regu-
lar triangulation A for which it is A-normal with respect to the lattice generated
by the points [Hogten & Thomas 2003]. The program does the following

e computes a lattice basis of the generated lattice using the LLL-algorithm
[Lenstra et al.|

e rewrites each of the input vectors as an integer combination of the lattice
basis elements.

e computes all regular triangulations of the new point configuration using
TOPCOM [Rambau]

e for each triangulation A it tests if the point configuration is A-normal. This
is done using normaliz [Bruns & Koch] on each triangle in A.

Rewriting the points in another basis allows us to check normality of each triangle
with respect to Z" instead of the lattice generated by the configuration (which
normaliz is unable to do). The computations done with normaliz are cached to
improve speed.

The input is a point configuration in the usual format and the output is "true"
or "false".
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5.5 Graver

The program cats_graver can compute the graver basis of a toric ideal. The
input should be a matrix (see 3.2). The program simply calls 4ti2’s graver
command. The reason for using the CaTS version of this program is that the
input and output are written in formats that CaTS supports. The Graver basis
is part of the input to the computation of monomial A-graded ideals.

5.6 BinomialList2Degree

The program cats_binomiallist2degree computes the maximal degree of any
binomial in a list of binomials. The program is usually used in combination with
cats_graver.

5.7 Monomialldeal2StandardPairs

The program cats_monomialideal2standardpairs computes the standard pairs
of a monomial ideal. Example:

./cats_monomialideal2standardpairs
followed by
{a~2#b,b*b}

produces the list

{C1, (@),
(axb , O ),
(b, O)}

5.8 MaximalMinors

The program cats_maximalminors computes the set of determinants of all max-
imal minors of the input matrix. The input matrix must have more columns than
rows. Example:

./cats_maximalminors
. followed by
{(0,1)(2,3) (4,5}
produces the list

{-4, -2}

So the given point configuration is not unimodular.
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6 Reliability

The first version of CaTS used the implementation of the simplex algorithm
from TiGERS to find facets of Grébner cones. This was not numerically stable.
Permuting the points in large point configurations would sometimes change the
number of Grobner bases computed. To avoid this CaTS was linked to SoPlex
[Wunderling| and no such problems have been discovered since. Unfortunately
SoPlex relies on floating-point arithmetics so there is no guarantee that the com-
putations are correct. Recently this has been solved by linking CaTS to cddlib
|[Fukuda] which is capable of handling exact arithmetics using gmp [gmp|. cddlib
can also do floating point arithmetics. It is recommended to verify ones compu-
tation using cddlib. See Section 3.1 for how to specify which LP solver is being
used. Cddlib is slightly faster than SoPlex when not using gmp. With gmp cddlib
is many times (>15) times slower. A reason for using SoPlex is that you must
be root to install cddlib in a way that works with CaTS without changing the
source files. Use SoPlex if cddlib is not installed on your system and you do not
have root access to install it.

Another issue regarding reliability is the initial computation of a Grébner basis
for a toric ideal of a point configuration. Ca'TS uses floating point computations
for this, so it might be a good idea to verify the result with another program or
simply give CaTS the a reduced Grobner basis as input.
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A  Commands

The following is a list of command in CaTS with references to examples or explanation.
The files listed in “Invoked” are programs run by CaTS when using the specified pro-
gram /option, see section 2.4.

Program Description Invoked Section

cats -t2 Reverse search 4.1

cats -t3, -tl Exhaustive search 4.1

cats -L Input as a lattice 4ti2 4.3

cats -tb Fixed radical 4.1

cats -t7 (, -A, -g) A-graded 4ti2  if 4.2
-8

cats -t8 (, -A, -g) A-graded fixed radical —4ti2 if 4.2
-8

cats -w Radical by radical us- 4.4

ing TOPCOM output

cats_binomiallist2degree Largest degree in a list 5.6
of binomials

cats_fiber A fiber of a matrix 5.2
cats_graver The Graver basis 4ti2 5.5
cats_interactive Interactive mode M2 5.1
cats_isdeltanormal Tests if a point config- normaliz, 54

uration is A-normal TOPCOM

cats_maximalminors The determinants of 5.8
the maximal minors

cats_monomialideal2standardpairs The standard pairs of a 5.7
monomial ideal

cats_vectorlist2monomiallist Converter 5.3
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